

Ph.D. Programme

Curriculum Structure

(2022 Onwards)

Department of Geology School of Earth Sciences, Central University of Tamil Nadu, Thiruvarur-610005

Email: hodgeology@cutn.ac.in

Ph.D. Programme

(2022 Onwards)

To produce and sustain the conditions that enable the students to experience transformative learning in becoming independent and ideal learners through education of global standards. This would be achieved by maintaining high academic standards, sustaining the quality of science teaching, learning offered, providing an intellectual, personal, and socially transformative experience to students.

B. Mission

- M1 To provide student-centric learning environment through scientific and innovative pedagogy
- M2 To create excellent infrastructure facilities and state-of-the-art laboratories
 - To encourage research and industry-institute partnerships through collaborative
- M3 activities for innovation and development

To promote conferences/seminars/workshops/society development programs for

M4 creation of avenues for research exchange and knowledge enhancement in thrust areas

To enhance leadership qualities, ethical and moral values, research culture and

M5 innovative skills among the students by offering high quality education and other services in a competitive manner

C. Program Educational Objectives (PEO) – Ph.D.

After successful completion of the Doctoral Research Course Work, the scholar will be able to

PEO1 Develop a desire to keep learning throughout life

PEO2 Mould scholars to work in a professional setting

- PEO3 Constantly update themselves in areas to their career
- **PEO4** Develop high level of thinking and problem-solving skills
- PEO5 Address the societal needs and work for betterment of society
- PEO6 Visualise complex problems in a global scale
- **PEO7** Train the scholars to conduct independent research as well as working in a team

Ph.D. Programme

(2022 Onwards)

D. Attributes for Ph.D. in Geology

- 1. **Disciplinary Knowledge:** Content and pedagogical knowledge synchronised with the geoscience research frameworks
- 2. **Communication Skills:** Conveying the geo-scientific understanding, ideas, and concepts with Scientific and Technological communities.
- 3. Critical Thinking: Capacity to apply their skills through experimental, analytical, numerical, and model-based research.
- 4. **Problem Solving:** To identify the research gaps and appropriate remedies for various issues in Earth Sciences.
- 5. **Co-operation:** Effective collaboration among different organisations and industries working in the domain of geo/planetary sciences.
- 6. **ICT Skills:** Selecting and integrating appropriate geoscientific technological skills for personal, professional development and knowledge dissemination.
- 7. Ethics: To develop the basics of ethics, research integrity, moral principles, and professional ethics.

E. PEO to Mission Statement Mapping

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6	PEO7
M1	✓	√	✓	\sim	✓	\checkmark	\checkmark
M2	✓	\checkmark	✓	✓	✓	\checkmark	\checkmark
M3	✓	\checkmark		√	✓	\checkmark	\checkmark
M4	✓	\checkmark	\checkmark	√	✓	\checkmark	\checkmark
M5	~	✓	\checkmark	~	✓	~	\checkmark

F. Program Outcomes (PO)

On the successful completion of the program, the student will be able to

- **PO1** Will be able to identify the knowledge gaps for further understanding.
- **PO2** Structuring the methodology, execution and designing of research work.
- **PO3** Analyse critical data/ results and their interpretation for simpler understanding.
- **PO4** Impact the skills to communicate the research with the scientific community through peer-reviewed publications at the national and international levels.
- **PO5** Inculcate the practice of performing research professionally, ethically and responsibly.
- **PO6** Develop substantial skills in solving geological problems for societal benefits.

Ph.D. Programme

(2022 Onwards)

G. PO to PEO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
PEO1	✓	✓	✓	✓	\checkmark	✓
PEO2	✓	✓	✓	✓	\checkmark	✓
PEO3	✓	✓	✓	✓	\checkmark	✓
PEO4	~	✓	✓	✓	\checkmark	✓
PEO5	✓	✓	✓	✓	\checkmark	\checkmark
PEO6	✓	✓	✓	✓	√	$ \rightarrow $
PEO7	✓	✓	✓	✓	✓	\checkmark
		ento	Cec			

Ph.D. Programme

(2022 Onwards)

Programme Structure

		Cre	dits	Asses	sment			
Semester	Code	Title	L	Total	CIA	ESE		
	First Semester							
Ι	GLYDRC01	Research Methodology*	4	4	40	60		
Ι	GLYDRC02	Research and Publication Ethics (RPE)*	2	2	40	60		
Ι	GLYDRC03	Analytical Techniques in Geosciences and Seminar*	4	4	40	60		
Ι	-	Specific Research Course (SRC) **	4	4	40	60		
			Total	14	4()0		
•								

Option for Research Specific Course

		Coognatial Tashnalogy and				
Ι	GLYSRC01	Geospatial Technology and Modelling in Groundwater	4	4	40	60
1	OL I SKC01	e e	4	4	40	00
		Resources				
т	GLYSRC02	Advances in Structural	4	4	40	60
1	ULTSKC02	Geology	4	+	40	00
I	GLYSRC03	Applied Geochemistry	4	4	40	60
-			•	•		
Ι	GLYSRC04	Geomechanics	4	4	40	60
	GLYSRC05	Hazards and Risk Impact		_		60
I		Assessment	4	4	40	
I	GLYSRC06	MOOC/ SWAYAM /NPTEL	4	4	40	60
	UL I SICOU	Course	4	4	40	00
CIA: Contin	ESE: End Semester Examination					
DRC: Depa	rtment Researc	h Course	SRC: Specific Research Course			

Note: Research Scholar have to complete their course work within a year from date of admission with minimum credits of 14.

*Compulsory Courses

**SRC shall be floated in every academic year and research scholar can choose any one or more courses based on the Research Supervisor and Research Advisory Committee (RAC) suggestions and recommendations.

Ph.D. Programme

(2022 Onwards)

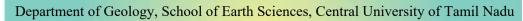
d. Common Evaluation Scheme for all the courses

Theory course with a credit of 4

	CO1	CO2	CO3	CO4	Total
Internal/ Assignments	10	10	10	10	40
External	15	15	15	15	60
Total	25	25	25	25	100

Theory course with a credit of 2

	C01	CO2	Total
Internal/ Assignments	20	20	40
External	30	30	60
Total	50	50	100


e. Mapping Course Outcome with Internal Assessment (40 Marks)

Theory course with a credit of 4

• Theory course with a credit of 4									
	CO1	CO2	CO3	CO4					
Assignments	2	2	2	2					
Seminar	2	2	2	2					
Test	5	5	5	5					
Attendance	1	1	1	1					
Total	10	10	10	10					

Theory course with a credit of 2

	CO1	CO2
Assignments	4	4
Seminar	4	4
Test	10	10
Attendance	2	2
Total	20	20

Ph.D. Programme

(2022 Onwards)

f. Common Mapping Course Outcome with External Assessment (60 Marks)

• Theory course with a credit of 4

Category	CO1	CO2	CO3	CO4
Part – A (Objective - 10 x 1 = 10 marks)	3	2	3	2
Part – B (Short Answer - 5 x 4 = 20 marks)	5	5	5	5
Part – C (Essay- 3 x 10 = 30 marks)	7	8	7	- 8
Total	15	15	15	15

• Theory course with a credit of 2

Category		CO1	CO2
Part – A (Objective - 10 x 1 = 10 marks)		6	4
Part – B (Short Answer - 5 x 4 = 20 marks)		10	10
Part – C (Essay- 3 x 10 = 30 marks)	6	14	16
Total		30	30

g. Common Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	well developed, supported with specific evidence & facts and examples	detailed, Developed and supported with evidence and	particularly	Content is	Not attended	
2	Organiza -tion	introduction, statement of the main idea with illustration and	introduction, statement of main idea and	organısatıonal tools	No	Not attended	

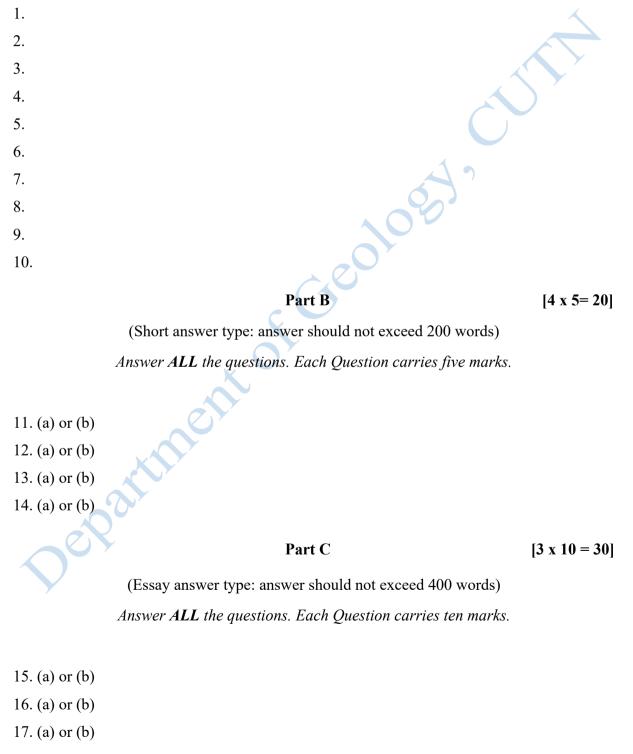
Ph.D. Programme

(2022 Onwards)

h. Common Rubric for Seminar

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	and Understanding	1	knowledge of facts, terms	knowledge of facts, terms	Minimal knowledge of facts, terms and concepts		
2	Presentation 50%		Communicated with sequences		No coherent communication		
		ment	0				
	Debay						

Ph.D. Programme


(2022 Onwards)

i. Common Model Question Paper

Part A

[10 x 1=10]

(Objective type: multiple choice, fill in the blanks, one word answer) Answer ALL the questions. Each Question carries one mark.

Ph.D. Programme

(2022 Onwards)							
	SEMESTER	- I					
Course Code	Course Name	L	Р	Credits			
GLY DRC01	Research Methodology	4	_	4			

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

	Course Outcome				
CO1	Provide students with the fundamental knowledge of research methods	Understand			
CO2	Design used in and analyse and interpret methods of quantitative and qualitative data.	Understand			
CO3	Understand how using valid scientific methods of measurement and scaling can improve and create knowledge.	Analyse			
CO4	Develop, complete, write, and present a valid and ethical research report.	Evaluate			

Units	Content	Hrs.
I	Introduction to Research: Basic Research, Pure Research, Applied Research Modern Scientific approach to Research; Interdisciplinary approach and its implications; Methods of Research- Qualitative and quantitative methods of research like Historical, case study, ethnography, exposit facto, documentary and content analysis, survey (Normative, descriptive, evaluative etc.), field and experimental studies;	15
П	Development of research proposal, its elements, identification of research problem-criteria of sources and definition, review of literature and collection of references, development of objectives, development of hypotheses and applications. Skills required for conducting research; sources of research data- primary and secondary sources;	15
	Concept of sampling, Sampling techniques- concept, types (random, purposive, stratified random, probability and non-probability); Survey and Mapping; Tools and techniques of data collection for qualitative and quantitative research-observation, interview, questionnaire, rating scale, inventory, check list, content analysis; Tools of data analysis and decision-making Reliability and validity of tools.	15
IV	Basics of communication skills, types of scientific communication, structure of a research paper; principles of report writing and guidelines according to style manuals, writing and presentation of preliminary, main body and reference section of report, picture and graphs, evaluation of research report; characteristics of scientific writing and guidelines of style manual, effective illustration, reference style and presentation of scientific papers and synopsis.	15

Ph.D. Programme

(2022 Onwards)

Tasks and Assignments:

Each student is required to undergo the following:

- ✓ Assignments
- ✓ Seminars
- ✓ Class Tests

References

- Christian Tiberius, Hans van der Marel, René Reudink & Freek van Leijen (2021) Surveying and Mapping. Publisher: TU Delft OPENTU Delft Open TextbookDelft University of Technology — The Netherlands. ISBN (e-book): 978-94-6366-489-9. DOI: https://doi.org/10.5074/T.2021.007.
- 2. Gautam, N.C. (2004) Development of Research tools, Shree Publishers, New Delhi
- 3. Gupta Santosh (2005) Research Methodology and Statistical Techniques, Deep and Deep Publications.
- 4. Kothari C R, Research Methodology (Methods and Techniques) New Age Publications.
- 5. Panneerselvam, R., Research Methodology, Prentice Hall of India, New Delhi.
- 6. Sharon Lohr, "Sampling: Design and Analysis" Duxbury Press
- 7. Williams H Roy. Earth Science New Methods and Studies (2021). (Eds) Apple Academic Press. ISBN 9781774631874

	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	\checkmark	✓	✓			\checkmark		
CO2	\checkmark	\checkmark	\checkmark			\checkmark		
CO3		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
CO4				\checkmark	\checkmark	\checkmark		
CO4 V V								

Ph.D. Programme

(2022 Onwards)SEMESTER - ICourse CodeCourse NameLPCreditsGLY DRC02Research Ethics2-2

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

	Course Outcome	Level				
C01	Understand the basics of philosophy of science and ethics, research					
cor	integrity, publication ethics.					
	Guide in presenting plagiarism tools for a valid and ethical research					
CO2	report, Indexing and citation databases, open access publications,	Understand				
	research metrics.					

1

Units	Content	Hrs.
Ι	Definition of research ethics; confidentiality in maintaining the analysis data; scientific misconduct in research practice; essential ethical principles for research students, plagiarism, falsification, fabrication; Redundant Publications: duplicate and overlapping publications, salami slicing; selective reporting and misinterpretation of data. Definition, introduction, and importance of publication ethics; Conflicts of interest, authorship and contributor-ship, publication misconduct and violation of publication ethics; identification of predatory publishers and journals.	15
п	Introduction to open access publication; introduction to software tools to identify predatory publications and journal suggestion tools like Elsevier Journal Finder, Springer, Journal Suggester, etc.; use of plagiarism software like Turnitin, Urkund and other open-source software tools; introduction to Indexing databases, citation databases and research metrics. Impact factors, h- index, i10 index, and altmetrics	15
Tasks	and Assignments:	
	tudent is required to undergo the following:	
	gnments	
✓ Sem		
	as Tests	
Refere		
	cholas H. Steneck. Introduction to the Responsible Conduct of Research. Off search Integrity. 2007.	ice of
	nics in Science Education, Research and Governance Edited by Kambadur Mural nit Ghosh Ashok Kumar Singhvi. Indian National Science Academy, 2019.	idhar,

Ph.D. Programme

(2022 Onwards)

\checkmark	PO4	PO3	PO2	PO1	
					CO1
\checkmark	\checkmark	\checkmark		\checkmark	CO2
		Co		attr	Per

Ph.D. Programme

(2022 Onwards)

SEMESTER - I						
Course Code	Course Name		L	Р	Credits	
GLY DRC03	Analytical Techniques in Geosciences and Seminar	n	4	-	4	

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO1	Analyse and interpret various geochemical data using common geochemical analytical techniques	Apply
CO2	Understand the principles of statistical analysis in geosciences	Understand
CO3	Use computer software and programing language for geological data interpretation	Analyse
CO4	Communicate their research findings with the scientific community	Evaluate

Units	Content	Hrs.
Ι	Introduction to principles of common geochemical analysis techniques; X-Ray diffraction (XRD), X-Ray Fluorescence (XRF) & Scanning Electron Microscopy (SEM) and its applications.	15
п	Statistical methods; standard deviation; skewness and kurtosis; scatter diagrams; frequency distribution; histogram; correlation, covariance, correlation coefficient and regression. Chi square distribution; probability; students 't' test, 'f' test; confidence interval, analysis; calculation of variance- covariance, simple linear models; cluster analysis.	15
ш	Hands on basic computer skills MS Word, Excel, PPT, Origin, CorelDRAW. Basic idea of the use of Python for statistical analysis.	15
IV	Application of geospatial technology in earth sciences. Assignments and Seminar presentation based on scholar's area of interest	15
Each s ✓ Assi ✓ Sem	and Assignments: tudent is required to undergo the following: gnments inars s Tests	
Refere		
Me	tts, P. J. (2012). A handbook of silicate rock analysis. Springer Science & Bu dia. 1, R. (2014). Modern Analytical Geochemistry: an introduction to quanti	

Ph.D. Programme

(2022 Onwards)

chemical analysis techniques for Earth, environmental and materials scientists. Routledge.

- 3. Merriam D.F., (Ed.) (2000). Computer Methods in the Geosciences, Elsevier.
- 4. Davis, J. C., (2002) Statistics and data analysis in geology, third edition, John Wiley & Sons, Singapore.
- 5. Simon W., (2000) Houlding Geostatistics: Modeling and Spatial Analysis, Springer: Har/CdrEdition (8 June 2000), CD-ROM: 161 pages, 2000.
- 6. Hohn, M.E. (1988) Geostatistics and Petroleum Geology, New York: Van Nostrand Reinhold,
- 7. Ott, R. L. & Longnecker, M (2015) An introduction to statistical methods & data analysis, Cengage Learning, USA.
- 8. Lutz, M, (2013) Learning Python, O'Reilly Media, Inc., USA.

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	✓ ✓	<u> </u>	√		<u> </u>	<u>√</u>
CO1	√	✓	✓		\checkmark	✓
CO3		✓	✓		\checkmark	✓
CO4				✓	✓	\checkmark
Per	attr	ento	Go			

	Department of Geology, School of Earth Sciences, Central University of Tamil Nadu Ph.D. Programme (2022 Onwards)						
Course Cod	e Coi	SEMESTER Irse Name	- I L	Р	Credits		
GLY SRC0		Technology and	L	-	Creatis		
	1	in Groundwater	4	-	4		

a. Course Outcome (CO)

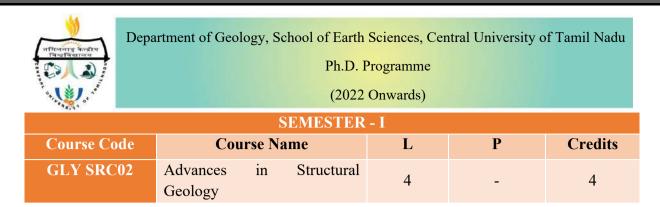
On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO1	Provide scholars with the fundamental knowledge of Geospatial	Understand
CO2	Technology and its application in groundwater resources. Handling the remote sensing and GIS software	Analyse
CO3	Groundwater Exploration	Evaluate
CO4	Groundwater modelling and assessment	Evaluate

Units	Content	Hrs.
Ι	The fundamental concept of remote sensing - EMR (Electro-Magnetic Radiation) and its interaction with earth's surface and atmosphere, spectral bands and its characteristics; Digital Image Processing – Radiometric correction, Geometric correction, Noise removal, Edge detection, spatial	15
п	filters. GNSS, GIS – Data model and its application Hydrological Properties of Rocks: Porosity, Permeability, Specific Yield and Specific Retention, Base Flow, Transmissivity and Storage Coefficient - Hydraulic Conductivity – Aquifers: Types - unconfined, confined, leaky and perched aquifers: Darcy's Law: Validity of Darcy's Law - Ground Water Flow Equations: Steady, Unsteady and Radial Flow: Surface water quality and quantity assessment: Graphical Representation and Interpretation of Water Quality Data	15
ш	Drilling Methods for Groundwater Bore Wells, Tube wells. Problems are due to the over-exploitation of groundwater, hard rock aquifer systems. Measurement of aquifer properties (Hydraulic Conductivity Transmissivity, Storativity) in different geological environments.	15
IV	Remote sensing, GIS and GNSS for groundwater exploration with case studies. Outline of methods of groundwater exploration - Groundwater provinces of India and Tamil Nadu. Groundwater modelling and its application. Groundwater Assessment including water budget.	15
Each s	and Assignments: tudent is required to undergo the following:	1

Ph.D. Programme

(2022 Onwards)


✓ Seminars

✓ Class Tests

References

- 1. Anbazhagan. S, Venkatachalapathy, R. Neelakantan, R 2009. Exploration Geology and Geoinformatics, 1st Edition, Macmillan India Ltd., ISBN: 10:0230-63867-8
- 2. Jensen, J. R. (2005): Introductory Digital Image Processing, Prentice-Hall, New Jersey
- 3. Joseph, G. (2004): Fundamentals of Remote Sensing, Universities Press, Hyderabad, India
- 4. Lillesand, T. M., Kiefer, R. W. and Chipman, J. W. (2008): Remote Sensing and Image Interpretation, John Wiley & Sons, New Delhi
- 5. Sabins, Floyd F. Jr., 1997: Remote Sensing: Principles and Interpretation, W.H.Freeman, New York.
- 6. David Keith Todd, Larry W. Mays, (2013) Groundwater Hydrology, Wiley son's publication.
- 7. Fetter, C. W, (2007) Applied Hydrology, CBS Publications.
- 8. Herman Bouwer, (2014) Groundwater Hydrology, McGraw hill education private limited.
- 9. Raghunath, H.M., (2003) Groundwater, New age international publications.
- Deman, MCJ. Smith G.S and Verstappen, H. T. (1986), Remote Sensing for resources development and environmental management, A. A. Ballkema Publishers, Totterdam, Netherlands.
- 11. Ramakrishnan. S. (1998) Groundwater, CBS Publishers & Distributors.
- 12. Parbin Singh, Engineering and General Geology, Eight Revised Edition, Published by S.K. Kataria & Sons.
- **13.** Siddan Anbazhagan, Arumugam Jothibasu, Guru Balamurugan (2019). Climate Change in Water Resources. Allied Publishers, New Delhi, India. ISBN: 978-93-87997-82-0

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	\checkmark	\checkmark	\checkmark		\checkmark	
CO2		\checkmark	\checkmark		\checkmark	\checkmark
CO3		\checkmark	\checkmark		\checkmark	\checkmark
CO4				\checkmark	\checkmark	\checkmark

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO1	Explain the stresses acting in the earths and its resultant deformation, explain concept of strain and its significance.	Understand
CO2	Analyse the tectonics in brittle and ductile regime and relationship between deformation and crystallisation.	Analyse
CO3	Explain the meso and micro-deformation and construct the retrodeformation.	Apply
CO4	Analyse the petrofabric elements, paleo-earthquake deformation and the theory of plate tectonics	Apply
b. Syllabı		

Units	Content	Hrs.				
	Mechanical properties of rocks; Types, representation and role of stresses in					
Ι	rock deformation; Dynamics of faulting under different stress regimes; Strain	15				
	ellipsoids, Techniques of Strain analyses.					
	Thin- and thick-skinned tectonics; Thrust Geometry and Fault-related folds;					
II	Relation between Deformation and Crystallisation, Detailed analysis of Shear	15				
	zone.					
	Crystallographic and Lattice preferred orientation of minerals and					
III	their implications; Penetrative and non-penetrative fabrics and their use in	15				
111	structural analyses; Analysis of meso and microscopic structures in deformed					
	rocks; Concept of Balanced Cross Section.					
	Petrophysical properties of rocks; Petrofabric analyses; Paleoseismology;					
IV	Application of Anisotropy of Magnetic Susceptibility in fabric analysis of	15				
	rocks; Plate tectonics and geodynamics of plate boundaries					
Tasks	and Assignments:					
Each s	tudent is required to undergo the following:					
🗸 Assi	gnments					
✓ Sem	✓ Seminars					
✓ Class Tests						
Refere	ences					
1. Ghosh, S.K. (1993). Structural Geology: Fundamentals and Modern Development						
Pergamon Press.						

Ph.D. Programme

(2022 Onwards)

- Jayangondperumal, R. Thakur, V.C., Vivek, J., Priyanka, R.S. and Gupta, A.K. (2018). Active Tectonics of Kumaun and Garhwal Himalaya, 151 pp. Springer Natural Hazard Series.
- 3. Marshak, S. and Mitra, G. (1988). Basic Methods of Structural Geology. Printice Hall.
- 4. Ramsay, J.G. (1967): Folding and fracturing of rocks. McGraw Hill.
- 5. Ramsay, J.G. and Huber, M.I. (1983). Techniques of Modern Structural Geology, Vol. I, Strain Analysis. Academic Press.
- 6. Ramsay, J.G. and Huber, M.I. (1987). Techniques of Modern Structural Geology, Vol. II, Folds and Fractures. Academic Press.
- 7. Twiss, R.J. and Moores, E.M. (2006). Structural Geology, 2nd Edition. W. H. Freeman.
- 8. Tarling, D.H. and Hrouda, F. (1993) The Magnetic Anisotropy of Rocks. Chapman & Hall, London.

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	✓	\checkmark	\checkmark			\checkmark
CO2	\checkmark	\checkmark	\checkmark			\checkmark
CO3		\checkmark	\checkmark		\checkmark	\checkmark
CO4		\checkmark	\checkmark		\checkmark	\checkmark
Per	attr	ento	Go			

Ph.D. Programme (2022 Onwards)

**************************************		/		
	SEMESTER	- I		
Course Code	Course Name	L	Р	Credits
GLY SRC03	Applied Geochemistry	4	-	4

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO1	Understand the geochemical behavior of elements in various reservoirs of the Earth and their interaction with different environmental components.	Understand
CO2	Explain the principles of geochemistry to understand the behavior of various elements in aquatic and sedimentary environments.	Analyse
CO3	Apply the geochemistry of rocks and minerals in mineral exploration and petrogenesis.	Apply
CO4	Demonstrate the relationship between geological processes and health risks associated with humans, animals and plants	Apply
b. Syllabu	is	

Units	Content	Hrs.
Ι	Introduction to the chemical composition, properties and evolution of various reservoirs of the Earth. Classification, mineralogy, origin and significance of meteorites. Geochemical classification of elements. Element partitioning in mineral/rocks formation and concept of distribution coefficient. The applications of trace elements in the petrogenesis. Introduction to radioactivity, geochronology and isotopic mass fractionation. Radiogenic and stable isotopic systematics. Decay scheme of K–Ar, Ar–Ar, Rb–Sr, Sm–Nd and U–Th–Pb systems. Stable isotope geochemistry of carbon, oxygen, hydrogen, sulphur and its applications in petrology and paleoclimatology.	15
П	Geochemistry of natural waters, water quality, water sampling techniques, analytical methods in hydro chemical studies, interpretation of physical and chemical data of water, graphical representation methods in presenting hydro chemical data. Introduction to sediment geochemistry, Geochemical processes involved in rock weathering and soil formation.	15
III	Distribution of elements in the Earth crust, primary and secondary dispersion of elements, controls of dispersion, mobility of elements, geochemical association of elements, application of pathfinder elements in mineral exploration, determination of geochemical anomaly, background and threshold value, geochemical survey methods, geochemical sampling techniques- litho- geochemical sampling, pedo-geochemical sampling, atmo-geochemical sampling, heavy mineral sampling and biogeochemical sampling.	15

Ph.D. Programme

(2022 Onwards)

01		(2022 Onwards)
		pretation of geochemical data in mineral exploration.
Ν	Fund meta toxic conc body and	damentals of agricultural geochemistry, sources of trace elements and als in soils, pollution assessment in soils, health effects associated with city/deficiency of various elements in plants and crops. Definition, cepts and history of medical geology, chemical constituents of the human <i>y</i> , essential elements and toxic elements, dose-response curve. Geophagy health benefits of geologic materials. Geologic sources of health risks – rosis, silicosis, arsenicosis, iodine deficiency diseases (IDD), Radon
		rds, heavy metal poisoning and nitrate contamination in ground water.
Tas		Assignments:
		t is required to undergo the following:
	Assignme	
√ 5	Seminars	
√ (Class Tes	ts
Ref	ferences	19
1.	Clark, I.	(2015). Groundwater geochemistry and isotopes. CRC press.
2.	Dissanay	vake, C. B., & Chandrajith, R. (2009). Introduction to Medical Geology. Erlangen
	Earth Co	onference Series. Springer.
	•	N. (2016). Principles of environmental geochemistry. Waveland Press.
		. (1977). Principles of isotope geology. John Wiley & Sons.
5.	-	pf, K. B., & Bird, D. K. (1967). Introduction to geochemistry (Vol. 721). New cGraw-Hill.
6.	Levinsor	n, A. A. (1980). Exploration geochemistry. Applied Publishing, Wilmette, IL.
7.		., Whateley, M., & Evans, A. (2005). Introduction to mineral exploration. Wiley-
	Blackwe	
8.		n, H. R. (2014). Using geochemical data: evaluation, presentation, interpretation.
	Routledg	
9.		, B. F. (2016). Radiogenic isotope geochemistry: A guide for industry
	1	onals. Cambridge University Press.
	-	O. (2013). Essentials of medical geology: revised edition. Springer.
		V. M. (2020). Geochemistry. John Wiley & Sons.
12.	Winter,	J. D. (2013). Principles of igneous and metamorphic petrology. Pearson

12. Winter, J. D. (2013). Principles of igneous and metamorphic petrology. Pearson education.

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	\checkmark	\checkmark	\checkmark			√
CO2	\checkmark	\checkmark	\checkmark			\checkmark
CO3	\checkmark	\checkmark	\checkmark			
CO4	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

Ph.D. Programme

4

GLYSRC04

(2022 Onwards) **SEMESTER - I Course Code Course Name** Т Р Credits L

4

_

_

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

Geomechanics

	Course Outcome	Level
CO1	Explain various concepts of rock mechanics and geomechanics used in various engineering projects	Understand
CO2	Study rock failure mechanism, rock mass classifications and the concept of rock slope engineering, landslide study	Apply
CO3	Analyse the concept of flow of fluids in porous media and wellbore stability	Analyse
CO 4	Evaluate the importance of geomechanics in varius conventional and unconventional engineering projects	Evaluate
b. Syl	labus	
TI	Constant	II

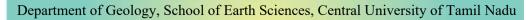
Units	Content	Hrs.				
I	Basic principles of geomechanics and its application. Concept of stress-strain-					
	deformation in reservoir. Physical, mechanical properties of rocks and their	15				
	gnificance; Mohr's circle of stress and strain and theories of rock failure					
	mechanics.					
П	Discontinuities in rock masses. Concepts of rock mass classification.					
	Geological and geomechanical consideration for evaluation of sites for	geomechanical consideration for evaluation of sites for 15				
	engineering projects, Rock slope engineering, and Landslide's investigation.					
III	Fluid flow in porous media and constitutive laws; stress around vertical,					
	horizontal, and deviated wells; Determination of in-situ stresses. Wellbore	15				
	failure and stress determination in deviated wells. Wellbore stability; cap rock	and stress determination in deviated wells. Wellbore stability; cap rock				
	integrity,					
	Reservoir compaction and subsidence; hydraulic fracturing; geomechanics of					
IV	unconventional hydrocarbon reservoirs; geomechanics of carbon storage and	15				
	enhanced oil/gas recovery; induced seismicity and risks.					
	and Assignments:					
	tudent is required to undergo the following:					
	gnments					
✓ Sem						
✓ Clas	ss Tests					
Refere						
1. De	b, D., Verma, A.K. (2016). Fundamental and applications of rock mechanics	. PHI				
Lea	arning Private Limited.					

Ph.D. Programme

(2022 Onwards)

- Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W. (2007). Fundamental of rock mechanics. Blackwell Publishing Ltd.
- 3. Singh, B., Goel, R.K. (2011). Engineering rock mass classification. Elsevier Inc.
- 4. Zoback, M.D. (2010) Reservoir Geomechanics, Cambridge University Press.
- 5. Zoback, M., & Kohli, A. (2019). Unconventional Reservoir Geomechanics: Shale Gas, Tight Oil, and Induced Seismicity. Cambridge, Cambridge University Press.
- 6. Ahmed, T. & McKinney, P. D. (2005). Advanced Reservoir Engineering, Gulf Professional Publishing.

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	✓	✓	✓		✓	\checkmark
CO2	\checkmark	\checkmark	\checkmark			\checkmark
CO3	\checkmark	✓	✓			\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Per		ento	Cec			


	Department of Geology, School of Earth Sciences, Central University of Tamil Nadu Ph.D. Programme (2022 Onwards)						
SEMESTER - I							
Course Code	Course Name	L	Т	Р	Credits		
GLYSRC05	Hazards and Risk Impact Assessment	4	-	-	4		

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

	Course Outcome			
	Course Outcome			
CO1	Describe common natural hazards and their impact on human settlements and natural systems.	Understand		
CO2	Apply critical thinking approach to development of new risk reduction policies. Evaluate the common methods used to mitigate and prepare for each type of hazard event.	Apply		
CO3	Describe Risk Impact Assessment (RIA) and Risk Management.	Evaluate		
CO4	Examine Hazard, Risk, Vulnerability, & Capacity (FIRVC) analysis in sectoral applications.	Evaluate		
b. Syllabus				

Units	Content	Hrs.
I	Introduction to natural and anthropogenic hazards-Definitions of natural and anthropogenic hazards; Type of natural and anthropogenic hazards; Geophysical Hazards-Intro to geophysical hazards (e.g., earthquake, volcanic eruption, rock fall, landslide, avalanche, and subsidence); Introduction to methods for analysing geophysical hazards.	15
П	Hydrometeorological hazards-Introduction to hydrometeorological hazards (e.g., flood, drought, storm, extreme temperature, wildfire, and wet mass movement); Introduction to methods for analysing hydrometeorological hazards. Biological hazards-Introduction to biological hazards (e.g., epidemic, insect infestation, and animal stampede): Introduction to methods for analysing biological hazards.	15
m	Introduction to risk assessment-Introduction to disaster risk management and risk assessment; Hazard Assessment-Hazard types; Main concepts of hazard assessment; Frequency magnitude – relationships; Vulnerability assessment-Types of vulnerability; social vulnerability; physical vulnerability; methods for vulnerability assessment; participatory GIS; Spatial Multi Criteria Evaluation.	15
IV	Elements at risk assessment-Types of elements at risk; classification of buildings, infrastructure, lifelines, critical facilities; population information; collection of elements at risk information; Risk assessment-Loss estimation models; HAZUS; qualitative risk assessment; QRA; basics of flood risk, seismic risk, landslide and technological risk assessment; Risk management-	15

Ph.D. Programme

(2022 Onwards)

Risk evaluation; risk governance; risk communication; cost benefit analysis; Using risk information for emergency planning; spatial planning and Environmental Impact Assessment.

Tasks and Assignments:

Each student is required to undergo the following:

- ✓ Assignments
- ✓ Seminars
- ✓ Class Tests

References

- 1. Alexander, D. E. (2013). Resilience and disaster risk reduction: An etymological journey. Natural Hazards and Earth System Sciences Discussions, 1(2), 1257-1284. https://doi.org/10.5194/nhessd-1-1257-2013
- 2. Below. R. &Wallemaca. P. (2018). Annual disaster statistical review 2017. CRED, Centre for Research on the Epidemiology of Disasters.
- 3. Change, I. P. 0. C. (2007). Climate change 2007: the physical science basis: summary for policymakers. Geneva: IPCC.
- 4. Coppola, D. P. (2006). Introduction to international disaster management. Elsevier. ISBN: 9780080465739
- 5. O'Brien, G., O'Keefe, P., Rose, J., & Wisner, B. (2006). Climate change and disaster management. Disasters, 30(1), 64-80. https://doi.org/10.1111/j.1467-9523.2006.00307.x
- Thomalla, F., Downing, T., Spanger-Siegfried, E., Han, G., &Rockström, J. (2006). Reducing hazard vulnerability: Towards a common approach between disaster risk reduction and climate adaptation. Disasters. 30(1), 39-48. https://doi.org/10.1111/j.1467-9523.2006.00305.x
- Multi Hazards Risk Assessment Theory Book, C.J. van Western (end), D. Alkema, M.C.J. Damen, N, Kerle, and N.C. Kindma, United Nations University – ITC School on Disaster Geoinformation Management (UNU-ITC DGIM), Version 2011.
- Multi Hazards Risk Assessment Exercise Book, C.J. van Western (end), D. Alkema, M.C.J. Damen, N, Kerle, and N.C. Kindma, United Nations University – ITC School on Disaster Geoinformation Management (UNU-ITC DGIM), Version 2011.

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	\checkmark	\checkmark	\checkmark			\checkmark
CO2	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
CO3			\checkmark	\checkmark	\checkmark	
CO4				\checkmark	\checkmark	\checkmark