OBE Template Department of Computer Science School of Mathematics and Computer Sciences

A. Vision

Vision Statement of the Department

To develop the department as a global leader in knowledge dissemination and to perform cutting edge research in computer science in compliance with international standards

B. Mission

Mission Statements of the Department

M1	To excel in transforming graduates into software experts with high degree of						
IVII	technical creativity and managerial skills						
M2	To excel in imparting quality education using innovative best practices						
М3	To train the students to take up various challenges of latest technologies in the field						
1110	of computer science						

C. Program Specific Outcomes (PSO)

After two years of successful completion of the program, the student will be able to achieve Academic competence: (i) Understand a range of programming languages such as Python, Java, R, C#, computing architecture, construction and design underlying in **PSO1** the field of computer science, and related disciplinary areas. (ii) Transfer the knowledge gained in the different computer science fields to solve real world problems. Personal and Professional Competence: (i) Perform laboratory-orientated computer programs to demonstrate different programming language concepts. (ii) PSO2 Design small executable software, useful mobile application by implementing analytical and critical thinking skills and deliver it on time in the form of report and PowerPoint presentation. **Research Competence:** Research Competence: (i) Analyse the computer software requirements and design a blueprint as well as executable application. (ii) Integrate PSO3 the data collected during the software development process which enhances teamwork and leadership skills.

PSO4
 <li

D. Graduate Attributes for M.Sc. (Computer Science) Program

- 1. **Disciplinary Knowledge:** Content and pedagogical knowledge synchronised with the curriculum frameworks and policies
- 2. Communication Skills: Possess clarity in conveying the ideas
- 3. **Critical Thinking:** Capacity to apply analytical thought in the teaching and learning process
- 4. **Problem Solving:** Participate in the educational problem solving and applying the knowledge in the day-to-day professional endeavors.
- 5. **Cooperation:** Appreciate collaboration and cooperation among stakeholders of education.
- 6. **ICT Skills:** Selecting and integrating appropriate ICT skills for professional development.
- 7. **Ethics:** Doing what is right to society
- 8. **Self-Directed Learning:** Developing autonomy and self-regulation in teaching, learning and professional development.
- 9. **Reasoning:** Ability to interpret and draw the conclusion from qualitative/quantitative data with open-mindedness
- 10. Creativity: Ability to produce new ideas
- 11. Societal and Environmental Concern: Performing an act or solving a problem with respect to societal and environmental concern
- 12. Lifelong Learning: Understands the need for learning and practices it throughout life

	PSO1	PSO2	PSO3	PSO4
M1	3	2	3	3
M2	3	3	2	2
M3	2	3	3	3

E. PSO to Mission Statement Mapping

(3 – High, 2 – Moderate, 1 – Low, 0 – No correlation)

F. Program Outcomes (PO)

On the successful completion of the program, the student will be able to

PO1	Core Knowledge: Ability to apply the knowledge of mathematics, probability and statistics and computer science in real-time applications
PO2	Problem Analysis: Clear understanding of the subject related concepts and contemporary issues and apply them to formulate, design, model, and analyze complex problems.
PO3	Design and Development of Product: Ability to design a component or a product that meet the specific needs with appropriate consideration for public health and safety, and the cultural, societal, and environmental considerations. Demonstrate knowledge and understanding of management skills related to project management.
PO4	Design and Conduct Experiments on Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern IT tools including prediction and modelling to complex activities with an understanding of the limitations.
PO6	Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams.
PO7	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

G. PO to PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
PSO1	3	3	3	3	3	2	2
PSO2	3	3	3	3	3	2	2
PSO3	2	3	3	3	2	2	3
PSO4	2	2	3	3	3	3	2

(3 – High, 2 – Moderate, 1 – Low, 0 – No correlation)

Course Code	Course Name	L	Т	Р	Credits
MSCT11	Discrete Mathematics	3	0	0	3

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

CO#	Course Outcome	Level
CO1	Apply Mathematical thinking, Mathematical proofs, and algorithmic	Apply
	thinking, in problem-solving	
CO2	Learn the concept of Sets, Relations and Functions and their properties	Remember
	and apply in solving problems	Apply
CO3	Describe mathematical induction and probability	Apply
CO4	Describe basic properties of graphs and related discrete structures, and	Apply
	be able to relate these to practical examples	
CO5	Describe the use of group theory and its applications	Apply

Units	Content	Hrs.
Ι	Mathematical Logic: Propositional and Predicate Logic, Propositional Equivalences, Normal Forms, Predicates and Quantifiers, Nested Quantifiers, Rules of Inference.	9
Π	Sets and Relations: Set Operations, Representation and Properties of Relations, Equivalence Relations, Partially Ordering. Boolean Algebra: Boolean Functions and its Representation, Simplifications of Boolean Functions.	9
ш	Counting, Mathematical Induction and Discrete Probability: Basics of Counting, Pigeonhole Principle, Permutations and Combinations, Inclusion-Exclusion Principle, Mathematical Induction, Probability, Bayes' Theorem.	9
IV	Group Theory: Groups, Subgroups, Semi Groups, Product and Quotients of Algebraic Structures, Isomorphism, Homomorphism, Automorphism, Rings, Integral Domains, Fields, Applications of Group Theory, Polya's theory of counting, Introduction to Error Correcting Codes. Discrete Geometry: Some basic definitions, Ham-Sandwich theorem	9
V	Graph Theory: Simple Graph, Multigraph, Weighted Graph, Paths and Circuits, Shortest Paths in Weighted Graphs, Eulerian Paths and Circuits, Hamiltonian Paths and Circuits, Planner graph, Graph Coloring, Bipartite Graphs	9
	 Tasks and Assignments: ✓ Each student is required to submit the assignments in time following the code of honest Text Books and References: Rosen, K.H., "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2011. Tremblay, J.P. and Manohar.R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2011. Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 4th Edition, Pearson Education Asia, Delhi, 2007. 	

4. Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's	
Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	1	2	1	2	2
CO2	3	2	2	2	0	2	1
CO3	3	3	1	1	0	2	1
CO4	3	3	3	2	1	2	2
CO5	2	2	1	1	0	1	2

(3 – High, 2 – Moderate, 1 – Low, 0 – No correlation)

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	2	2	2
Test	6	6	6	6	6
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Short Answer - 5 x 5= 25 marks)	5	5	5	5	5
Part – C (Essay- 5 x 7 = 35 marks)	7	7	7	7	7
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content	Ideas are detailed,	Ideas are	Ideas are	Content is	Not	CO1,
		well developed,	detailed,	presented but	not sound	attended	CO2,
	70%	supported with	Developed	not			CO3,
		specific evidence	and	particularly			CO4,
		& facts and	supported	developed or			CO5
		examples	with	supported;			
			evidence and				
			facts mostly				
			specific.				

2	Organiza	Includes title,	Includes title,	organizational	No	Not	CO1,
	-tion	introduction,	introduction,	tools	organization	attended	CO2,
		statement of the	statement of	are weak or			CO3,
	30%	main idea with	main idea and	missing			CO4,
		illustration and	conclusion.				CO5
		conclusion.					

Course Code	Course Name	L	Т	Р	Credits
MSCT12	Data Structures and Algorithms	3	0	0	3

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

CO#	Course Outcome	Level
CO1	Understand the concepts of algorithm analysis and solving recurrence	Understand
	relations	Apply
		Analyze
CO2	Learn linear and non-linear data structures and their usage in	Understand
	applications	Apply
		Analyze
CO3	Understand and Analyze various searching and sorting algorithms	Understand
		Analyze
CO4	Applying greedy and dynamic approaches to solve challenging	Apply
	problems	Analyze
		Create
CO5	Understand computational complexity classes and their importance in	Remember
	designing algorithms	Understand
		Create
		Evaluate

Units	Content	Hrs.
Ι	Introduction – linear and non linear data structures – Arrays – Structures – Stack – Queue - Representing Stacks and Queue - Linked lists and its different types – Application of stacks, queues and lists.	9
Π	Trees – binary tree - binary search trees - querying a binary search tree – insertion – deletion -union-find operations – AVL trees - Graphs - Undirected and Directed Graphs - Elementary graph algorithms – minimum spanning trees – single source shortest paths – All-pairs shortest paths	9
III	The role of algorithms in computing; algorithm analysis – computational tractability- asymptotic order of growth - survey of common running times - Big O notation; sorting and searching - algorithm analysis techniques –quick sort – heaps - Maintaining the heap property- building a heap – the heap sort algorithm -sorting in linear time – recurrences	9
IV	Divide and conquer- The maximum-subarray problem - Strassen's algorithm for matrix multiplication; greedy algorithms - An activity-selection problem - Elements of the greedy strategy; dynamic programming - Rod cutting - Matrix- chain multiplication	9
V	Linear Programming - Standard and slack forms - simplex algorithm. NP- Hard And NP-Complete Problems – Basic concepts; NP-HARD GRAPH PROBLEMS – Clique Decision Problem(CDP); NP-HARD SCHEDULING PROBLEMS - Scheduling Identical Processors	9
	Tasks and Assignments:	
	 Each student is required to submit the assignments in time following the code of honest 	

Text Books and References:	
. T.H. Cormen, C.E. Leiserson, and R.L. Rivest: Introduction to algor	ithms,
Prentice-Hall (1998).	
2. J. Kleinberg and E. Tardos: Algorithm design, Pearson/Addison-We 2006).	lsey
B. Jean Paul Tremblay and Paul G. Sorenson, An Introduction to data	
tructures, with applications 2nd edition, Tata McGraw-Hill, 2001	
A. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++	
English) 3rd Edition, Addition-wesley, Third Indian Reprint, 2007	
5. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algor	ithms,
Addison-Wesley, Reading, Massachusetts, 1983.	
5. R. L. Kruse, Data Structures and Program Design in C., Prentice Hal	l of
ndia, New Delhi, 1994.	
7. Ellis Horowitz, Sartaj Sahni and Susan Anderson, Fundamentals of I	Data

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	2	1	2	2
CO2	3	3	3	3	2	2	2
CO3	3	3	3	3	2	2	2
CO4	3	3	3	3	2	2	2
CO5	3	3	3	3	3	3	3

(3 - High, 2 - Moderate, 1 - Low, 0 - No correlation)

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Test	8	8	8	8	8
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (5 * 3 = 15 marks)	3	3	3	3	3
Part – B (5 * 9 = 45 marks)	9	9	9	9	9
Total	12	12	12	12	12

g. Model Question Paper

Sl. No.		Model Questions				
		Part – A (5 * 3 = 15 m	arks)			
1	(a) Identify suitable dat	a structure for job schee	luling problem. (1)	Recall	Remember	
1	(b) Define the operation	ns associated with comp	lexity (2)	Recall	Remember	
	(a) Draw a complete gra	aph with 6 vertices label	led A to F. (1)	Draw	Skill	
2	(b) Represent the adjace (2)	ent matrix and adjacency	/ list for the resultant graph.	Solve	Apply	
3	Solve the following recruins the recurrence tre	urrence relation $T(n) =$ e method and calculate t	$T\left(\frac{n}{4}\right) + T\left(\frac{n}{2}\right) + \Theta(n^2)$ the running time.	Solve	Apply	
1	(a) Dynamic Programm True or False and give a	ing approach is faster th a valid reason. (1)	an Greedy approach. State	Examine	Evaluate	
-	(b) When would you set problem? Give reason.	Distinguish	Analyze			
	(a) Define Hamiltonian	Cycle with an example.	(2)	Recall	Remember	
5	(b) State whether findin Complete or not? (1)	g a Hamiltonian cycle i	n a given graph is NP-	Recall	Remember	
					1	
	Convert the following e step-by-step manner.	xpressions in infix notat	tion to prefix notation in a	Solve	Apply	
	(a) ((P+Q)*(R-S))					
6	~ ~	OR				
	a) Create a single linke $1 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 1$ Write r	d list that has elements i	in the sequence (5)	Apply	Understand	
	b) Differentiate betwee	n an array and a list. (4)	n. (<i>J</i>)	Compare	Understand	
	(a) Insert the node 2 in t	he Binary Search Tree	given in Figure – 1. (2)	Solve	Apply	
	(b) Delete the node3 from(c)Write the Insert proc	om the Binary Search Tr edure and determine the	ee given Figure – 1. (3) complexity (4)			
7		OP				
	Determine the minimun using Kruskal's algorith	n spanning tree for the g	raph given in Figure – 2	Solve	Apply	
	For each of the follow					
	running time and brief	fly explain the reason.				
	a. Sum=0:	b. Sum=0:	с.	Examine	Analyze	
	for(i=0;i <n;i++)< td=""><td>for($i=0;i < n;i++$)</td><td>int count = 0;</td><td></td><td></td></n;i++)<>	for($i=0;i < n;i++$)	int count = 0 ;			
8	for(j=0;j <n*n;j++)< td=""><td>for(j=0;j<i*i;j++) if(i%i==0)</i*i;j++) </td><td>for(i=n/2; i<=n; i++)</td><td></td><td></td></n*n;j++)<>	for(j=0;j <i*i;j++) if(i%i==0)</i*i;j++) 	for(i=n/2; i<=n; i++)			
	Contra i ș	for(k=0;k <j;k++)< td=""><td>$for(j=1;j\leq=n;j=2*j)$</td><td></td><td></td></j;k++)<>	$for(j=1;j\leq=n;j=2*j)$			
			for(k=1;k<=n;k=k*2)			
		sum++;	count++;			

	OR		
	Solve the recurrences given for the worst-case running time.	Solve	Apply
	a. $T(1) = 1$ for all $n \ge 2$ $T(n) = 3$ $T(n-1) + 2$		
	b. $T(1) = 1$ for all $n \ge 2$ (n is a power of 2) $T(n) =$		
	$3T(n/2) + n^2 - n$		
	c. $I(1) = 1$ for all $n \ge 2$ (n is a power of 2) $I(n) = 2$ $T(n/2) + 6n = 1$		
	2 I(n/2) + 6n - 1		
	Determine the product of two matrices given using Strassen's Matrix	Recall	Remember
	Multiplication Algorithm. $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$		
	OR		
9	Given value vector as $\begin{bmatrix} 60 & 100 & 220 \end{bmatrix}^T$ and weight vector	Determine	Apply
	$\begin{bmatrix} 10 & 20 & 30 \end{bmatrix}^T$ and total knapsack capacity as 50, place the items in		
	the knapsack in such a way that the maximum valuable items are		
	placed. Determine the solution using Dynamic Programming and		
	Greedy approach and comment on the result.		
	(a) Differentiate between Decision Problems and Optimization	Compare	Understand
	Problems. (5)	Predict	Evaluate
	(b) How do you determine the solution of a decision problem A if you do not know the precedure for determining its solution?	Treater	Livalate
10			
	OR		
	Define any three pairs of related problems where one is solvable in	Recall	Remember
	polynomial time and the other is NP-Complete.		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Course Code	Course Name	L	Т	Р	Credits
MSCT13	Computer Organization	3	0	0	3

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

CO#	Course Outcome	Level
CO1	Describe the fundamental organization of a computer system	Understand
CO2	Understand the organization of control units, and pipelining operations	Understand
CO3	Understand memory cells, different kinds of memory, address	Understand
	translation, and memory management	
CO4	Learn input and output systems, I/O devices, ports, and bus organization	Remember
CO5	Compare Multi-core processors, and GPUs.	Analyze

Units	Content	Hrs.
	BASIC STRUCTURE OF COMPUTERS	
т	Function and structure of a computer, Interconnection of components,	0
L	Performance of a computer. Machine instructions, Operands, Addressing	9
	CISC and PISC architectures	
	PROCESSING UNIT AND PIPELINING	
	Organization of a processor - Registers ALU and Control unit Arithmetic	
II	Units - addition subtraction multiplication division floating point units -	
	Data nath in a CPU Instruction cycle Organization of a control unit -	9
	Operations of a control unit Hardwired control unit Micro programmed	
	control unit. Pipelining, Hazards, Overcoming hazards	
	MEMORY SUBSYSTEM	
	Semiconductor memories, Memory cells - SRAM and DRAM cells,	
	Internal Organization of a memory chip, Organization of a memory unit,	
III	Error correction memories, Interleaved memories, Cache memory unit -	9
	Concept of cache memory, Mapping methods, Organization of a cache	
	memory unit, Memory management unit - Concept of virtual memory,	
	Address translation, Hardware support for memory management.	
	INPUT/OUTPUT SUBSYSTEM	
	Access of I/O devices, I/O ports, I/O control mechanisms - Program	
IV	controlled I/O, Interrupt controlled I/O and DMA controlled I/O, I/O	9
	interfaces - Serial port, Parallel port, PCI bus, SCSI bus, USB bus, I/O	
	peripherals - Input devices, Output devices, Secondary storage devices.	
V	PARALLELISM	9
	ILP, Dynamic scheduling, Introduction to Multi-core processors, GPUs.	
	l asks and Assignments:	
	\checkmark Each student is required to submit the assignments in time following the	
	code of honest	
	Text Books and References:	
	1. Computer Organization and Design: The Hardware/Software Interface,	
	Fifth Edition, by David Patterson & John Hennessy, 2013, Morgan-	
	Kaufmann.	

2. Carl Hamacher, Zvonko Vranesic, Safwa	
3. William Stallings, "Computer Organization and Architecture –	
Designing for Performance", TenthEdition, Pearson Education, 2016.	
4. John P. Hayes, "Computer Architecture and Organization", Third	
Edition, Tata McGraw Hill, 1998. t Zaky and Naraig Manjikian, "Computer	
Organization and Embedded Systems", Sixth Edition, Tata McGraw Hill,	
2012.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	1	1	0	1	1
CO2	3	2	2	1	0	1	1
CO3	3	2	2	2	2	1	2
CO4	2	3	3	2	1	2	1
CO5	3	3	2	2	1	1	2

(3 - High, 2 - Moderate, 1 - Low, 0 - No correlation)

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	2	2	2
Test	6	6	6	6	6
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Short Answer - 5 x 5= 25 marks)	3	3	3	3	3
Part – C (Essay- 5 x 7 = 35 marks)	9	9	9	9	9
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	Ideas are presented but not particularly developed or supported;	Content is not sound	Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	Includes title, introduction, statement of the main idea with illustration and conclusion.	Includes title, introduction, statement of main idea and conclusion.	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

Course Code	Course Name	L	Т	Р	Credits
MSCT14	DATABASE MANAGEMENT SYSTEMS	3	0	0	3

a. Course Outcome (CO)

	Course Outcome	Level
CO1	Identify the basic concepts and apply relational database theory	Remember
	and recognize and identify the use of normalization and	
	functional dependency, indexing technique used in database	
	design.	
CO2	Describe relational algebra expression, tuple and domain relation	Understand
	expression for queries and query processing concepts	
CO3	Apply and relate the concept of transaction, concurrency control	Apply
	and recovery in database.	
CO4	Familiar with basic database storage structures and access	Analyze
	techniques: file and page organizations, indexing methods	
	including B tree, and hashing.	
CO5	Understand various concepts like Parallel, distributed and object-	Understand
	oriented databases.	

Units	Content	Hrs.
I	File System versus DBMS – Advantages -Views – Data models – Database languages – Architecture – E-R Model – Conceptual design with E-R – Extended E-R - Relational Model - Codd's rule - Keys – Constraints – Relational database design – Anomalies - Functional dependencies – 1NF to 5NF – Decomposition – Denormalization.	9
II	Relational Query Languages – Relational Algebra – Tuple and domain Relational Calculus – SQL – Query processing and optimization – Transformation of relational expressions – Evaluation plans	9
ш	Transaction – Properties – Concurrent execution – Serializability – Concurrency control – Protocols – Recovery System – Database Security	9
IV	File organization – Organization of records in files – Indexing – B tree and B+ tree index files – Static hashing – Dynamic hashing	9
V	Parallel and distributed databases – Object-based databases - Mobile databases - XML and Web databases – Intelligent databases – Mongo DB – NOSQL – PostgreSQL	9
	References A. Silberchatz, F. Korth, and S. Sudarshan, "Database System Concepts", Fourth Edition, McGraw Hill, 2002. R. Elmasri and S. B. Navathe, "Fundamentals of Database Systems", Third Edition, Pearson Education, 2000.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	2	1	1	2
CO2	3	2	3	2	1	1	2
CO3	3	2	2	2	3	1	3
CO4	3	2	2	2	1	1	1
CO5	1	2	2	2	1	1	1

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	-	2	-	-	-
Seminar	-	-	-	2	-
Test	8	6	8	6	8
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Objective - $10 \times 1 = 10$ marks)	2	2	2	2	2
Part – B (Short Answer - 5 x 3 = 15 marks)	3	3	3	3	3
Part – C (Essay- 5 x 7 = 35 marks)	7	7	7	7	7
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence &facts andexamples	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	Ideas are presented but not particularly developed or supported;	Content is not sound	Not attended	CO2

2	Organiza -tion 50%	Includes title, introduction, statement of the main idea with illustration and Conclusion.	Includes title, introduction, statement of main idea and Conclusion.	organizational tools are weak or missing	No organization	Not attended	CO2
---	--------------------------	---	--	---	--------------------	-----------------	-----

h. Rubric for Seminar

Sl. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Knowledge and Understandin g 50%	Exceptional knowledge of facts, terms, and concepts	Detailed knowledge of facts, terms, and concepts	Considerable knowledge of facts, terms, and concepts	Minimal knowledge of facts, terms, and concepts	Not Attende d	CO4
2	Presentation 50%	Well Communicate d with logical sequences, examples, and references	Communicate d with sequences	Just Communicate d	No coherent communicatio n	Not Attende d	CO4

i. Model Question Paper

SI. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple Choice Marks: 10 x 1 = 10		
1	 Fields in Relational Database terminology mean: a) Attributes b) Records c) Element d) Data 	Recognize	Remember
2	 Primary key in a relation should be : a) Not null b) Unique c) Unique and not null d) Unique and null 	Recall	Remember
3	Which of the following can be a multi-valued attribute ? a) Phone_number	Recognize	Remember

 c) Date_of_birth d) All of the mentioned Which of the following operation is used if we are interested in only certain columns of a table? a) PROIECTION b) SELECTION c) UNION d) JOIN Data integrity constraints are used to: a) Control who is allowed access to the data b) Ensure that duplicate records are not entered into the table c) Improve the quality of data entered for a specific property (i.e., table column) d) Prevent users from changing the values stored in the table 6 Why are certain FD called as trivial FD. Recognize Remember 7 Two relations to be joined into a third relation if Recall Remember g Write note on various types of cardinality mapping Recall Remember D Can we have multiple index for the same relation. Explain Identify Remember The answer should not exceed 200 words Marks:5 x 3 = 15 Explain Entity, attribute and relationship with example. Explain Entity, attribute and relationship with example. Explain Lettity, attribute and relationship with example. Which functional dependencies violate 3NF? Explain Apply Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: (A ~> B, BC ~> D, E ~> C, D ~> A}. What are the candidate keys of R? Write short notes on object oriented databases Explain Understand Which functional dependencies hold: (A ~> B, BC ~> D, E ~> C, D ~> A}. What are the candidate keys of R? S Write short notes on object oriented databases Explain Understand FART - Consider a relation scheme R = (A, B, C, D, E, H) on w		b) Name		
d) All of the mentioned Image: Constraint of the mentioned Which of the following operation is used if we are interested in only certain columns of a table? Recognize a) PROJECTION Recognize b) SELECTION Recognize c) UNION Ottom d) JOIN Recognize Data integrity constraints are used to: a) Control who is allowed access to the data b) Ensure that duplicate records are not entered into the table Recognize c) Improve the quality of data entered for a specific property (i.e., table column) Recognize d) Prevent users from changing the values stored in the table Recognize f Two relations to be joined into a third relation if Recall g When not use databases Identify l0 Can we have multiple index for the same relation. Explain Identify l1 Explain Entity, attribute and relationship with example. Explain l2 Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: (A ~> B, BC ~> D, E_ ~ Skill l3 Which functional dependencies hold: (A ~> B, BC ~> D, E_ ~ Skill l4 fo		c) Date_of_birth		
Which of the following operation is used if we are interested in only certain columns of a table? Recognize 4 a) PROJECTION Recognize b) SELECTION Duta integrity constraints are used to: Recognize a) Control who is allowed access to the data Recognize Remember 5 Control who is allowed access to the data Recognize Remember 6 Why are certain FD called as trivial FD. Recognize Remember 7 Two relations to be joined into a third relation if Recall Remember 8 Write note on various types of cardinality mapping Recall Remember 9 When not use databases Identify Remember 10 Explain Entity, attribute and relationship with example. Explain Understand 11 Explain Entity, attribute and relationship with example. Explain Understand 12 dependencies violate 3NF? Explain Apply 13 Which functional dependencies violate 3NF? Explain Understand 14 following functional dependencies hold: (A.>B, B.C.>D, E., H) on which the Absees Skill Skill 15 Write short notes on o		d) All of the mentioned		
a) PROJECTION Recognize Remember 4 a) PROJECTION Recognize Remember b) SELECTION Recognize Remember c) UNION UNION Recognize Remember b) SELECTION Recognize Remember c) UNION Recognize Remember 5 Control who is allowed access to the data Recognize Remember 5 Improve the quality of data entered for a specific property (i.e., table column) Recognize Remember 6 Why are certain FD called as trivial FD. Recognize Remember 7 Two relations to be joined into a third relation if Recall Remember 9 When not use databases Identify Remember 10 Can we have multiple index for the same relation. Explain Identify Remember 11 Explain Entity, attribute and relationship with example. Explain Understand 12 dependency? understand Difference understand 12 dependency? Explain Apply 13		Which of the following operation is used if we are interested in		
4 a) PROJECTION b) SELECTION c) UNION d) JOIN Recognize Remember 2 Data integrity constraints are used to: a) Control who is allowed access to the data b) Ensure that duplicate records are not entered into the table Recognize Remember 5 c) Improve the quality of data entered for a specific property (i.e., table column) d) Prevent users from changing the values stored in the table Recognize Remember 6 Why are certain FD called as trivial FD. Recall Remember 7 Two relations to be joined into a third relation if Recall Remember 8 Write note on various types of cardinality mapping Recall Remember 9 When not use databases Identify Remember 10 Can we have multiple index for the same relation. Explain Identify Remember 11 Explain Entity, attribute and relationship with example. Explain Understand 12 dependency? Linderstand Difference skill 14 following functional dependencies hold: (A->B, BC->D, E- -C, D->A). What are the candidate keys of R? Explain Understand 15 Write short notes on object oriented databases Explain Understand 14		only certain columns of a table?		
b)SELECTIONCc)UNIONd)JOINd)JOINd)JOINData integrity constraints are used to: a)Control who is allowed access to the data b)Ensure that duplicate records are not entered into the tableRecognizec)Improve the quality of data entered for a specific property (i.e., table column) d)Prevent users from changing the values stored in the tableRecognize6Why are certain FD called as trivial FD.ReccallRemember7Two relations to be joined into a third relation ifRecallRemember8Write note on various types of cardinality mappingRecallRemember9When not use databasesIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember11Explain Entity, attribute and relationship with example.ExplainUnderstand12dependency?LinderstandDifferenceunderstand13Which functional dependencies violate 3NF?ExplainApply14Gollowing functional dependencies hold: $\{A - B, BC - D, E > C, D - >A\}$. What are the candidate keys of R?ExplainUnderstand15Write short notes on object oriented databasesExplainUnderstand16(CR)(CR)ExplainUnderstand17kaset should not exceed 400 wordsMarks:5 x 7 = 35A. Discuss the advantages and dis advantages of DBMS over FILE management systemsExplain the Algorithm for converting ER diagram to Re	4	a) PROJECTION	Recognize	Remember
c) UNION Image: Constraints are used to: Image: Constaints are used to: Image: Image: Conster arelation arelatore to		b) SELECTION	U	
Data integrity constraints are used to:A control who is allowed access to the dataRecognizeData integrity constraints are used to:a) Control who is allowed access to the dataRecognize5Control who is allowed access to the datab) Ensure that duplicate records are not entered into the tableRecognize6Why are certain FD called as trivial FD.RecognizeRemember7Two relations to be joined into a third relation ifRecallRemember8Write note on various types of cardinality mappingRecallRemember9When not use databasesIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember11Explain Entity, attribute and relationship with example.ExplainUnderstand12Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies violate 3NF?ExplainApply13Which functional dependencies violate 3NF?ExplainUnderstand14following functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?ExplainUnderstand15Write short notes on object oriented databasesExplainUnderstand16Explain the Algorithm for converting ER diagram to Relational modelExplainUnderstand17hat sequivalent to each of the following: a) in IA(r1)(OR)AssessSkill		c) UNION		
Data integrity constraints are used to: a) Control who is allowed access to the data b) Ensure that duplicate records are not entered into the table c) Improve the quality of data entered for a specific property (i.e., table column) d) Prevent users from changing the values stored in the tableRecognizeRemember6Why are certain FD called as trivial FD.RecognizeRemember7Two relations to be joined into a third relation ifRecallRemember8Write note on various types of cardinality mappingRecallRemember9When not use databasesIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember11Explain Entity, attribute and relationship with example.ExplainUnderstand12dependency?understandDifferenceunderstand13Which functional dependencies violate 3NF?ExplainApply14following functional dependencies hold: $\{A \rightarrow B, BC \rightarrow D, E_{-} \geq C, D \rightarrow A\}$. What are the candidate keys of R?ExplainUnderstand15Write short notes on object oriented databasesExplainUnderstand16(OR)(OR)ExplainUnderstand17has advantages and dis advantages of DBMS over FILE management systems(OR)Assess16(OR)(OR)AssessSkill17the Algorithm for converting ER diagram to Relational modelAssessSkill17the Algorithm for converting ER diagram to Relational modelAssessSkill		d) JOIN		
a) Control with Satisfy access to the dataa) Ensure that duplicate records are not entered into the tableRecognizeRemember5c) Improve the quality of data entered for a specific property (i.e., table column) d) Prevent users from changing the values stored in the tableRecognizeRemember6Why are certain FD called as trivial FD.ReccallRemember7Two relations to be joined into a third relation ifRecallRemember8Write note on various types of cardinality mappingRecallRemember9When not use databasesIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember11Explain Entity, attribute and relationship with example.ExplainUnderstand12What is the difference between a key and a functional dependency?Differenceunderstand13Which functional dependencies violate 3NF?ExplainApply14following functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?ExplainApply15Write short notes on object oriented databasesExplainUnderstand16(OR) B. Explain the Algorithm for converting ER diagram to Relational modelAssessExplain17hat sequivalent to each of the following: a) IIA(rI)Other holds advantages of DBMS over FILE management systemsAssess17in the Algorithm for converting ER diagram to Relational modelAssessSkill		Data integrity constraints are used to:		
10)District table the tableRecognize a specific property (i.e., table column) d)Recognize property (i.e., table column) d)Remember6Why are certain FD called as trivial FD.Recall RememberRemember8Write note on various types of cardinality mapping PMET - B Short Answer The answer should not exceed 200 words Marks:5 x 3 = 15Remember10Can we have multiple index for the same relation. Explain The answer should not exceed 200 words Marks:5 x 3 = 15Understand Understand11Explain Entity, attribute and relationship with example.Explain UnderstandUnderstand12dependency?understandDifference Apply13Which functional dependencies violate 3NF?Explain ApplyApply14following functional dependencies hold: $\{A \rightarrow B, BC \rightarrow D, E_{-} > C, D \rightarrow A\}$. What are the candidate keys of R?Explain Apply15Write short notes on object oriented databasesExplain Answer Should not exceed 400 words Marks:5 x 7 = 35Munderstand Alter FILE management systems16(OR) B. Explain the Algorithm for converting ER diagram to Relational modelAssess AssessSkill17hat sequivalent to each of the following: a) IIA(rI) <td></td> <td>a) Control who is anowed access to the data b) Ensure that duplicate records are not entered into</td> <td></td> <td></td>		a) Control who is anowed access to the data b) Ensure that duplicate records are not entered into		
5InteractionRecognizeRemember6Why are certain FD called as trivial FD.RecognizeRemember7Two relations to be joined into a third relation ifRecognizeRemember8Write note on various types of cardinality mappingRecallRemember9When not use databasesIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember11Explain Entity, attribute and relationship with example.ExplainUnderstand12Which functional dependencies violate 3NF?ExplainApply13Which functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?ExplainUnderstand15Write short notes on object oriented databasesExplainUnderstand16(OR)(OR)B. ExplainInderstand17hansgement systems(OR)ExplainUnderstand18Nite short notes on object oriented databasesExplainUnderstand19Write short notes on object oriented databasesExplainUnderstand16(OR)(OR)ExplainInderstand17ka. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus tal is equivalent to each of the following: 		the table		
C) Improve quark quark of and columna specific of a specific of the	5	c) Improve the quality of data entered for a specific	Recognize	Remember
a)Property users from changing the values stored in the table6)Why are certain FD called as trivial FD.Recognize7Two relations to be joined into a third relation ifRecall8Write note on various types of cardinality mappingRecall9When not use databasesIdentify10Can we have multiple index for the same relation. ExplainIdentify11Explain Entity, attribute and relationship with example.Explain12What is the difference between a key and a functionalDifference12dependency?understand13Which functional dependencies violate 3NF?Explain14following functional dependencies violate aspect of the same relations on object oriented databasesExplain15Write short notes on object oriented databasesExplain16(OR)ExplainUnderstand17han Algorith not exceed 400 wordsMarks:5 x 7 = 3518A. Discuss the advantages and dis advantages of DBMS over FILE management systemsExplain16(OR)Understand17shem A. Eq. (A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) ITA(r1)Assess		property (i.e., table column)		
tabletableRecognizeRemember6Why are certain FD called as trivial FD.RecognizeRemember7Two relations to be joined into a third relation ifRecallRemember8Write note on various types of cardinality mappingRecallRemember9When not use databasesIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember11Explain Entity, attribute and relationship with example.ExplainUnderstand12What is the difference between a key and a functional dependency?Differenceunderstand13Which functional dependencies violate 3NF?ExplainApply14following functional dependencies have of R?ExplainUnderstand15Write short notes on object oriented databasesExplainUnderstand16(OR)Image of DBMS over FILE management systemsExplain for Converting ER diagram to Relational modelAssess17schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a)AssessSkill		d) Prevent users from changing the values stored in the		
6Why are certain FD called as trivial FD.RecognizeRemember7Two relations to be joined into a third relation ifRecallRemember8Write note on various types of cardinality mappingRecallRemember9When not use databasesIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember10PART - B Short AnswerIdentifyRemember11Explain Entity, attribute and relationship with example.ExplainUnderstand12dependency?ExplainDifferenceunderstand13Which functional dependencies violate 3NF?ExplainApply14following functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?Skillskill15Write short notes on object oriented databasesExplainUnderstand16(OR)(OR)Explain FLE management systemsUnderstand16Explain the Algorithm for converting ER diagram to Relational modelAssessSkill17schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a)AssessSkill		table		
7Two relations to be joined into a third relation ifRecallRemember8Write note on various types of cardinality mappingRecallRemember9When not use databasesIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember11Explain Entity, attribute and relationship with example.ExplainUnderstand12dependency?What is the difference between a key and a functional dependency?Differenceunderstand13Which functional dependencies violate 3NF?ExplainApply14following functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?ExplainUnderstand15Write short notes on object oriented databasesExplainUnderstand16(OR)Explain file management systemsExplain for converting ER diagram to Relational modelMarks:5 x 7 = 3517Schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a)AssessSkill	6	Why are certain FD called as trivial FD.	Recognize	Remember
8Write note on various types of cardinality mappingRecallRemember9When not use databasesIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember10Ean we have multiple index for the same relation. ExplainIdentifyRemember11Explain Entity, attribute and relationship with example.ExplainUnderstand12What is the difference between a key and a functional dependency?Differenceunderstand13Which functional dependencies violate 3NF?ExplainApply14following functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?Skillskill15Write short notes on object oriented databasesExplainUnderstand16 $RRT - C$ Essay Answer The answer should not exceed 400 wordsMarks:5 x 7 = 35Kill16 $RRT - C$ Essay Answer (OR)ExplainUnderstand16 $RRT - C$ Converting ER diagram to Relational modelExplainUnderstand17schema R, Give an expression in the domain relational calculus that is equivalent to each of the following: a)AssessSkill	7	Two relations to be joined into a third relation if	Recall	Remember
9When not use databasesIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember10Can we have multiple index for the same relation. ExplainIdentifyRemember11Explain Entity, attribute and relationship with example.ExplainUnderstand12What is the difference between a key and a functional dependency?Differenceunderstand13Which functional dependencies violate 3NF?ExplainApply14Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?Skill15Write short notes on object oriented databasesExplainUnderstand16(OR) B. Explain the Algorithm for converting ER diagram to Relational modelExplain and AssessUnderstand16N. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) IIA(rI)AssessSkill	8	Write note on various types of cardinality mapping	Recall	Remember
9IdentityRemember10Can we have multiple index for the same relation. ExplainIdentifyRememberPART - B Short Answer The answer should not exceed 200 wordsMarks:5 x 3 = 15Understand11Explain Entity, attribute and relationship with example.ExplainUnderstand12What is the difference between a key and a functional dependency?Differenceunderstand13Which functional dependencies violate 3NF?ExplainApply14Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?Skill15Write short notes on object oriented databasesExplainUnderstand16(OR)ExplainUnderstand18A. Discuss the advantages and dis advantages of DBMS over FILE management systemsExplain the Algorithm for converting ER diagram to Relational modelAssess17A. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) IIA(r1)AssessSkill	0	When not use databases	Identify	Demember
10 Can we have multiple index for the same relation. ExplainIdentifyRememberPART – B Short Answer The answer should not exceed 200 wordsMarks:5 x 3 = 15Understand11Explain Entity, attribute and relationship with example.ExplainUnderstand12What is the difference between a key and a functional dependency?Differenceunderstand13Which functional dependencies violate 3NF?ExplainApply14Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?Skill15Write short notes on object oriented databasesExplainUnderstandPART – C Essay Answer The answer should not exceed 400 wordsMarks:5 x 7 = 3516(OR) B. Explain the Algorithm for converting ER diagram to Relational modelAssess A. Let R =(A, B, C), and letr1 and r2 both be relations on A. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) IIA(r1)Muderstand	2			Remember D
PART – B Short Answer The answer should not exceed 200 words Marks:5 x 3 = 1511Explain Entity, attribute and relationship with example.ExplainUnderstand12Explain Entity, attribute and relationship with example.Differenceunderstand12What is the difference between a key and a functional dependency?Differenceunderstand13Which functional dependencies violate 3NF?ExplainApply14Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: {A>B, BC->D, E- 	10	Can we have multiple index for the same relation. Explain	Identify	Remember
The answer should not exceed 200 words Marks: 5 x 3 = 1511Explain Entity, attribute and relationship with example.ExplainUnderstand12What is the difference between a key and a functional dependency?Differenceunderstand13Which functional dependencies violate 3NF?ExplainApply14Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?Assess15Write short notes on object oriented databasesExplainUnderstandPART - C Essay Answer The answer should not exceed 400 wordsMarks:5 x 7 = 3516(OR)ExplainUnderstand17Relational model(OR)ExplainUnderstand17A. Let R = (A, B, C), and letr1 and r2 both be relations on that is equivalent to each of the following: a) IIA(r1)AssessSkill		PART – B Short Answer		
11Explain Entry, attribute and relationship with example.ExplainUnderstand12What is the difference between a key and a functional dependency?Difference understandunderstand13Which functional dependencies violate 3NF?ExplainApply13Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?Assess15Write short notes on object oriented databasesExplainUnderstand PART - C Essay Answer The answer should not exceed 400 words Marks:5 x 7 = 3516(OR) B. Explain the Algorithm for converting ER diagram to Relational modelExplain to Assess17A. Let R =(A, B, C), and letr1 and r2 both be relations on that is equivalent to each of the following: a) IIA(r1)AssessSkill		The answer should not exceed 200 words Warks: $5 \times 5 = 15$	Evelsie	
What is the difference between a key and a functional dependency?Difference12dependency?understand13Which functional dependencies violate 3NF?Explain14Consider a relation scheme $R = (A, B, C, D, E, H)$ on which the following functional dependencies hold: {A->B, BC->D, E- >C, D->A}. What are the candidate keys of R?Assess15Write short notes on object oriented databasesExplainUnderstandPART - C Essay AnswerThe answer should not exceed 400 wordsMarks:5 x 7 = 3516(OR) B. Explain the Algorithm for converting ER diagram to Relational modelExplain17A. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) $\Pi A(r1)$ Assess	11	Explain Entity, autioute and relationship with example.	Ехріані	Understand
12dependency?understand13Which functional dependencies violate 3NF?ExplainApply13Consider a relation scheme $R = (A, B, C, D, E, H)$ on which the following functional dependencies hold: $\{A \rightarrow B, BC \rightarrow D, E - >C, D \rightarrow A\}$. What are the candidate keys of R ?Assess15Write short notes on object oriented databasesExplainUnderstandPART - C Essay AnswerThe answer should not exceed 400 wordsMarks:5 x 7 = 35A. Discuss the advantages and dis advantages of DBMS over FILE management systemsExplain16(OR) B. Explain the Algorithm for converting ER diagram to Relational modelUnderstand17A. Let $R = (A, B, C)$, and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) IIA(r1)AssessSkill		What is the difference between a key and a functional	Difference	
13Which functional dependencies violate 3NF?ExplainApply13Consider a relation scheme $R = (A, B, C, D, E, H)$ on which the following functional dependencies hold: $\{A \rightarrow B, BC \rightarrow D, E - > C, D \rightarrow A\}$. What are the candidate keys of R?Assess15Write short notes on object oriented databasesExplainUnderstandPART - C Essay AnswerThe answer should not exceed 400 wordsMarks:5 x 7 = 35A. Discuss the advantages and dis advantages of DBMS over FILE management systemsExplain16(OR) B. Explain the Algorithm for converting ER diagram to Relational modelMarks: 5 x 7 = 3517A. Let R = (A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) IIA(r1)Assess	12	dependency?		understand
13Which functional dependencies violate 3NF?ExplainApply13Consider a relation scheme $R = (A, B, C, D, E, H)$ on which the following functional dependencies hold: $\{A->B, BC->D, E->C, D->A\}$. What are the candidate keys of R ?Assessskill15Write short notes on object oriented databasesExplainUnderstandPART - C Essay Answer The answer should not exceed 400 wordsMarks:5 x 7 = 35A. Discuss the advantages and dis advantages of DBMS over FILE management systemsExplainUnderstand16(OR) B. Explain the Algorithm for converting ER diagram to Relational modelAssessSkill17A. Let $R = (A, B, C)$, and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) $\Pi A(r1)$ AssessSkill				
1.5Consider a relation scheme $R = (A, B, C, D, E, H)$ on which the following functional dependencies hold: $\{A \rightarrow B, BC \rightarrow D, E -$ >C, $D \rightarrow A\}$. What are the candidate keys of R ?Assess15Write short notes on object oriented databasesExplainUnderstandPART – C Essay AnswerThe answer should not exceed 400 wordsMarks:5 x 7 = 35A. Discuss the advantages and dis advantages of DBMS over FILE management systemsExplain16(OR) Relational modelUnderstandA. Let $R = (A, B, C)$, and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) $\Pi A(r1)$ Assess	13	Which functional dependencies violate 3NF?	Explain	Apply
Consider a relation scheme $R = (A, B, C, D, E, H)$ on which the following functional dependencies hold: $\{A \rightarrow B, BC \rightarrow D, E - \\ \geq C, D \rightarrow A\}$. What are the candidate keys of R?Assess15 Write short notes on object oriented databasesExplainUnderstandPART - C Essay Answer The answer should not exceed 400 wordsMarks:5 x 7 = 35A. Discuss the advantages and dis advantages of DBMS over FILE management systemsExplain16(OR)B. Explain the Algorithm for converting ER diagram to Relational modelAssess17A. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) IIA(r1)Assess	15		•	rippiy
14following functional dependencies hold: $\{A->B, BC->D, E->C, D->A\}$. What are the candidate keys of R?skill15Write short notes on object oriented databasesExplainUnderstandPART – C Essay AnswerThe answer should not exceed 400 wordsMarks:5 x 7 = 35A. Discuss the advantages and dis advantages of DBMS overExplainFILE management systems(OR)UnderstandB. Explain the Algorithm for converting ER diagram to Relational modelUnderstandA. Let R = (A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) $\Pi A(r1)$ A. Second Assess		Consider a relation scheme $R = (A, B, C, D, E, H)$ on which the	Assess	
SC, D->A}. What are the candidate keys of R? Image: Sc, D->A}. What are the candidate keys of R? 15 Write short notes on object oriented databases Explain Understand PART - C Essay Answer The answer should not exceed 400 words Marks:5 x 7 = 35 A. Discuss the advantages and dis advantages of DBMS over Explain FILE management systems Explain I6 (OR) Understand B. Explain the Algorithm for converting ER diagram to Understand Relational model A. Let R =(A, B, C), and letr1 and r2 both be relations on Assess 17 Schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: Skill a) IIA(r1) Kill Skill	14	following functional dependencies hold: {A->B, BC->D, E-		skill
15Write short notes on object oriented databasesExplainUnderstandPART – C Essay AnswerThe answer should not exceed 400 wordsMarks:5 x 7 = 35Image: Marks: 5 x 7 = 35A. Discuss the advantages and dis advantages of DBMS over FILE management systemsExplainExplain16(OR)UnderstandB. Explain the Algorithm for converting ER diagram to Relational modelUnderstandUnderstand17A. Let R = (A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) ΠA(r1)A. Let R = (A, B, C)A. Skill		$C, D \rightarrow A$. What are the candidate keys of R?		
PART – C Essay AnswerThe answer should not exceed 400 wordsMarks:5 x 7 = 35A. Discuss the advantages and dis advantages of DBMS overExplainFILE management systems(OR)UnderstandB. Explain the Algorithm for converting ER diagram to Relational modelUnderstandA. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) ΠA(r1)A. Let R = (A, B, C)	15	Write short notes on object oriented databases	Explain	Understand
The answer should not exceed 400 words Marks:5 x 7 = 35 A. Discuss the advantages and dis advantages of DBMS over Explain FILE management systems OR) Understand B. Explain the Algorithm for converting ER diagram to Understand Relational model A. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: A. skill		PART – C Essay Answer		
A. Discuss the advantages and dis advantages of DBMS over Explain FILE management systems (OR) B. Explain the Algorithm for converting ER diagram to Understand Relational model A. Let R =(A, B, C), and letr1 and r2 both be relations on A. Let R =(A, B, C), and letr1 and r2 both be relational calculus Assess schema R. Give an expression in the domain relational calculus Skill nt is equivalent to each of the following: Skill	T	he answer should not exceed 400 words Marks:5 x $7 = 35$	F 1 '	
16 (OR) Understand 16 (OR) Understand B. Explain the Algorithm for converting ER diagram to Relational model Understand 17 A. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) ΠA(r1) A. Let R = (A, B, C) Assess Skill		A. Discuss the advantages and dis advantages of DBMS over	Explain	
10 (OR) Olderstand B. Explain the Algorithm for converting ER diagram to Relational model Relational model 17 A. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) ΠA(r1) Assess	16	FILE management systems		Understand
B. Explain the Algorithm for converting ER diagram to Relational model A. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) ΠA(r1)	10	B Explain the Algorithm for converting ER diagram to		Understand
17A. Let R =(A, B, C), and letr1 and r2 both be relations on schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) ΠA(r1)AssessSkill		Relational model		
17schema R. Give an expression in the domain relational calculus that is equivalent to each of the following: a) ΠA(r1)All the relational calculus Skill		A. Let $\mathbf{R} = (\mathbf{A}, \mathbf{B}, \mathbf{C})$, and let \mathbf{r}_1 and \mathbf{r}_2 both be relations on	Assess	
that is equivalent to each of the following: a) $\Pi A(r1)$ Skill		schema R. Give an expression in the domain relational calculus	1 100000	
a) $\Pi A(r1)$	17	that is equivalent to each of the following:		Skill
		a) $\Pi A(r1)$		

	b) $\sigma B = 17(r1)$		
	c) $r1 U r2$		
	d) $r1 \cap r2$		
	e) $r1 - r2$		
	(OR)		
	B. Write short notes on QBE		
	A. Write in detail about Aggregate operations in SQL	Explain	
18	(OR)		understand
10	B. Write short notes on Nested queries in SQL		understand
	A. Write in detail about various Normal forms	Explain	
	(UK) Departies the trade offer that a database designer mode to		
19	B. Describe the trade-offs that a database designer needs to		understand
	consider when deciding whether or not to store data in		
	normalized of de-normalised tables		
	A. Explain about Parallel databases and distributed databases.	Assess	
	(OR)		
	B. Suppose you are given a relation R with four attributes		
	ABCD. Foreach of the following sets of FDs,		
	assuming those are the only dependencies that holdfor R , do		
	the following: (a) Identify the candidate $key(s)$ for R. (b)		
20	Identify the best normal form that <i>R</i> satisfies (1NF, 2NF,		01.11
20	3NF, or BCNF).,		SKIII
	1. $C \rightarrow D, C \rightarrow A, B \rightarrow C$		
	2. $B \rightarrow C, D \rightarrow A$		
	3. $ABC \rightarrow D, D \rightarrow A$		
	4. $A \rightarrow B, BC \rightarrow D, A \rightarrow C$		
	5. $AB \rightarrow C, AB \rightarrow D, C \rightarrow A, D \rightarrow B$		

Course Code	Course Name	L	Т	Р	Credits
MSCT15	INTRODUCTION TO PROGRAMMING	3	0	0	3

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Understand the fundamental concepts of python and its main components.	Understand
CO 2	Develop (Read and Write) python programs using variables, assignments, and conditional statements using functions.	Create
CO 3	Illustrate and implement different data structures.	Analyze
CO 4	Demonstrate Object-oriented concepts and file handling.	Analyze
CO 5	Analyze and plot data using python visualization libraries.	Analyze

b. Syllabus

Units	Content	Hrs.
Ι	Introduction to an interpreter programming language, with its basic constructions (variables, assignment, control primitives) and its main components (text editor and interpreter, or one EDI)	9
Π	Programming concepts · Algorithms – Basics	9
III	Data Structures in Python	9
IV	Exception – Object Orientated Concepts (Basics), File Handling	9
V	Graph Plotting	9
	Text Book: • Python in easy steps, McGraw Hill, 2nd Reprint , 2014 • Python 3 Documentation, https://docs.python.org/3/. References: • Philips Dusty, Python 3, Object Oriented Programming , 2010	

c. Mapping of Program Outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	3	3	1	2
CO2	3	3	2	3	3	1	2
CO3	3	3	2	3	3	1	2
CO4	3	3	3	3	3	1	2
CO5	3	3	3	2	3	2	2

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

	CO1	CO2	CO3	CO4	CO5
Seminar	-	-	2	2	-
Test	8	8	6	6	8
Total	8	8	8	8	8

e. Mapping Course Outcome with Internal Assessment (40 Marks)

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part $- A$ (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part – B (Short Answer - 5 x 3 = 15 marks)	3	3	3	3	3
Part – C (Essay- 5x 7 = 35 marks)	7	7	7	7	7
Total	12	12	12	12	12

g. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	<u>Content -</u>	Exceptional	Detailed	Considerable	Minimal	Not	CO3,
	Knowledge &	knowledge	knowledge of	knowledge	knowledge of	Attende	CO4
	<u>understanding</u>	of facts, terms, and	tacts, terms, and concepts	of facts, terms, and	facts, terms, and concepts	d	
	a)Relevance to	concepts		concepts			
	the Topic						
	b)Organization						
	and Structure						
	c)Good						
	with						
	d)References						
	e) Audio and						
	50%						
2	Presentation &	Well	Communicate	Just	No coherent	Not	CO3,
	Delivery	Communica	d with	Communicat	communicatio	Attende	CO4
	a) Voice	ted with	sequences	ed	n	d	
	b) Confidence	logical					
	c) Viva	sequences,					
	50%	examples, and references					

h. Model Question Paper

Sl. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
1	 Which of the following is not a feature of python? a) Interpreted Language b) Portable c) Case Insensitive d) High-level language 	Recall	Remember
2	Find the output of the following code if (1 + 3 == 7): print("Hello") else: print("Hai") Hai	Recognize	Remember
3	What will be the value of the following Python expression? 4 + 3 % 5 a) 7 b) 2 c) 4 d) 1	Recognize	Understand
4	What will be the output of the following code? a = 3 b = 1 print(a, b) a, b = b, a print(a, b) a) 3 1 b) 1 3 c) 1 3 d) 1 3	Recognize	Understand
5	What will be the output of the following code? day = ["Sunday", "Monday", "Tuesday", "Wednesday"]; print(day[-3:-1]) a) ['Monday', 'Tuesday'] b) ['Sunday', 'Monday'] c) [' Tuesday ', 'Wednesday'] d) [' Tuesday ', 'Monday']	Recognize	Remember
6	What will be the output of the following code? l = [None] * 10 print(len(l)) a) 0 b) 10 c) syntax error d) None	Examine	Analyze
7	Tuple is immutable list. a) Yes b) No	Recall	Understand
8	Which of the following are libraries in Python? a) NumPy b. Pandas c) Matplotlib d)All of the above	Recall	Remember

	is used when data is in Tabular Format.		
9	a) NumPy b) Pandas c) Matplotlib d) All of the	Identify	Understand
	above		
	What will be the output of the following code?		
	def num():		
	try:		
10	print(1)	Identify	Analyza
10	finally:	Identify	Anaryze
	print(2)		
	num()		
	a) 1 2b) 1 c) 2 d) none		
	PART – B Short Answer		
	Answer any Five questions		
	5 x 3 = 15		
1	Differentiate break and continue statements in python.	Differentiate	Understand
2	Write a python program using functions to find the	Write	Create
2	maximum among two numbers (value returning function)	write	Create
3	Use set data structure to determine whether an element is in	Use	Remember
	the set or not.		
4	Interpret Files operations with examples.	Interpret	Apply
5	Discuss the Matplotlib usage in python.	Discuss	Remember
	PART – C Essay Answer 5x 7= 35		
	Answer any Five questions		
1	Illustrate any two looping constructs in python	Illustrate	Analyze
	Write a python program to generate the first "N" Fibonacci		
2	numbers (Each number is the sum of the preceding two	Write	Create
	numbers).		
3	Analyse dictionary in python with examples	Write	Create
4	Examine the use of try and except blocks in python with suitable examples.	Examine	Analyze
5	Explain the operations that can be performed in NumPy.	Explain	Understand

Course Code	Course Name	L	Т	Р	Credits
MSCT 21	OPERATING SYSTEMS	3	0	0	3

a. Course Outcome (CO)

	Course Outcome	Level
CO 1	Understand the functions, features, and concepts of operating systems.	Remember
CO 2	Learn the concept of process and Analyze the Inter Process Communication methods	Understand
CO 3	Analyze the scheduling algorithms and deadlocks	Apply
CO 4	Understand the concept of memory management	Analyze
CO 5	Evaluate security mechanisms in operating computing systems	Skill

Units	Content	Hrs.
I	OVERVIEW Introduction to operating systems – Computer system organization, architecture – Operating system structure, operations – Process, memory, storage management – Protection and security – Distributed systems – Computing Environments – Open-source operating systems – OS services – User operating-system interface – System calls – Types – System programs – OS structure – OS generation – System Boot – Process concept, scheduling – Operations on processes – Cooperating processes – Inter-process communication – Examples – Multithreading models – Thread Libraries – Threading issues – OS examples.	9
II	PROCESS MANAGEMENT Basic concepts – Scheduling criteria – Scheduling algorithms – Thread scheduling – Multiple processor scheduling – Operating system examples – Algorithm Evaluation – The critical section problem – Peterson's solution – Synchronization hardware – Semaphores – Classic problems of synchronization – Critical regions – Monitors – Synchronization examples – Deadlocks – System model – Deadlock characterization – Methods for handling deadlocks – Deadlock Prevention – Deadlock Avoidance – Deadlock detection – Recovery from deadlock.	9
Ш	STORAGE MANAGEMENT Memory Management – Swapping – Contiguous memory allocation – Paging – Segmentation – Example: The Intel Pentium - Virtual Memory: Background – Demand paging – Copy on write – Page replacement – Allocation of frames – Thrashing.	9
IV	I/O SYSTEMS File concept – Access methods – Directory structure – File-system mounting –Protection – Directory implementation – Allocation methods – Free-space management – Disk scheduling – Disk management – Swap-space management – Protection.	9
V	CASE STUDY The Linux System – History – Design Principles – Kernel Modules – Process Management – Scheduling – Memory management – File systems – Input and Output – Inter-process Communication – Network Structure – Security – Windows 7 – History – Design Principles – System Components – Terminal Services and Fast User – File system – Networking.	9

References:	
1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating	
System Concepts", 9th edition John Wiley & Sons Inc., 2012.	
2. Andrew S. Tanenbaum, "Modern Operating Systems", Fourth	
Edition, Addison Wesley, 2014.	
3. Charles Crowley, "Operating Systems: A Design-Oriented	
Approach", Tata McGraw Hill Education", 1996.	
4. D M Dhamdhere, "Operating Systems: A Concept-based Approach",	
Second Edition, Tata McGraw-Hill Education, 2007.	
5. William Stallings, "Operating Systems: Internals and Design	
Principles", Seventh Edition, Prentice Hall, 2011	

	9 0						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	3	2	1	1	2
CO2	3	2	3	2	1	1	2
CO3	3	3	2	2	3	1	3
CO4	3	2	2	2	1	1	1
CO5	3	2	3	3	1	1	3

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	-	-	2	-	-
Seminar	-	-			2
Test	8	8	6	8	6
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part – B (Short Answer - 5 x 3 = 15 marks)	3	3	3	3	3
Part – C (Essay- 5 x 7 = 35 marks)	7	7	7	7	7
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content	Ideas are detailed,	Ideas are	Ideas are	Content is	Not	CO3
		well developed,	detailed,	presented but	not sound	attended	
	50%	supported with	Developed	not			
		specific evidence	and	particularly			
		&facts	supported	developed or			
		andexamples	with	supported;			
			evidence and				
			facts mostly				
			specific.				
2		Includes title,	Includes title,	organizational	No	Not	CO3
	Organiza	introduction,	introduction,	tools	organization	attended	
	-tion	statement of the	statement of	are weak or			
		main idea with	main idea and	missing			
	50%	illustration and	Conclusion.	_			
		Conclusion.					

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Knowledge and Understandin g	Exceptional knowledge of facts, terms, and concepts	Detailed knowledge of facts, terms, and concepts	Considerable knowledge of facts, terms, and concepts	Minimal knowledge of facts, terms, and concepts	Not Attende d	CO5
	50%						
2	Presentation 50%	Well Communicate d with logical sequences, examples, and references	Communicate d with sequences	Just Communicate d	No coherent communicatio n	Not Attende d	CO5

i. Model Question Paper

Sl. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple Choice Marks: 10 x 1 = 10		
1	In which one of the following page replacement policies, Belady's anomaly may occur? (A) FIFO (B) Optimal (C) LRU (D) MRU	Recognize	Remember
2	 Which of the following is NOT a valid deadlock prevention scheme? (A) Release all resources before requesting a new resource (B) Number the resources uniquely and never request a lower numbered resource than the last one requested. (C) Never request a resource after releasing any resource (D) Request and all required resources be allocated before execution. 	Recall	Remember
3	The essential content(s) in each entry of a page table is / are (A) Virtual page number (B) Page frame number (C) Both virtual page and page frame number (D) Access right information	Recognize	Remember
4	A critical section is a program segment (A) which should run in a certain specified amount of time (B) which avoids deadlocks (C) where shared resources are accessed (D) which must be enclosed by a pair of semaphore operations, P and V	Recognize	Remember
5	A counting semaphore was initialized to 10. Then 6 P (wait) operations and 4V (Signal) operations were completed on this semaphore. The resulting value of the semaphore is (A) 0 (B) 8 (C) 10 (D) 12	Recognize	Remember
6	System calls are usually invoked by using(A) a software interrupt(B) polling(C) an indirect jump(D) a privileged instruction	Recognize	Remember
7	Which of the following actions is/are typically not performed by the operating system when switching context from process A to process B?(A) Saving current register values and restoring saved register values for process B.	Recall	Remember

	(B) Changing address translation tables.		
	(C) Swapping out the memory image of process A to the disk.		
	(D) Invalidating the translation look-aside buffer.		
	The first fit, best fit and worst fit are strategies to select a		
	(A) process from a queue to put in memory		
8	(B) processor to run the next process	Recall	Remember
	(C) free hole from a set of available holes		
	(D) All of these		
	Which of the following memory allocation scheme suffers from		
	external fragmentation?		
9	(A) Segmentation (B) Pure demand paging	Identify	Remember
	(C) Swapping (D) Paging		
	Resources are allocated to the process on non-sharable basis is		
10	(A) Mutual exclusion (B)Hold and wait	Identify	Remember
	(C)no Pre-emption (D)Circular wait		
	PART – B Short Answer		
	The answer should not exceed 200 words Marks:5 x 3 = 15		
11	What is a process? Explain the context switching process.	Explain	Understand
	Why is SJF or SRTF scheduling difficult to implement in a real	Difference	
	OS^2 Give an elternative approach with the same goals that		
1.0	US? Give an alternative approach with the same goals that		
12	can be implemented easily in a real OS.		understand
	<u> </u>		
	Consider a memory system with a cache access time of 10ns	Explain	
	and memory access of 200ns. for hit rate of 50%, what is the		
13	effective access time for the memory?		Apply
	Write short note on demand paging	Explain	
14			Understand
	Explain the security issues in windows 7.	Explain	
15		-	Understand
	PART – C Essay Answer		
Тh	e answer should not exceed 400 words Marks: 5 x 7 = 35	David	
1	IA WITH DOLE ON PROCESS PL & DROCESS STATE AND STATE TRANSITION	Explain	1
16	diagram	Explain	Understand

	(OR)		
	B. Explain various schedulers and scheduling criteria in		
	detail.		
	A. Consider the following set of processes assigned with CPU	Assess	
	P2 P3 P4 P5 and P6 have arrived in the same order at time		
	t=0,		
	Process Burst Priority		
	time		
	P1 10 3		
	$\begin{array}{c cccc} P2 & 1 & 1 \\ \hline P2 & 2 & 2 \\ \hline \end{array}$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	P5 5 2		
17			Skill
	Identify the Turnaround time and Waiting time for each Process		
	Non Pre-emptive priority Round Robin (quantum=1)		
	(OR)		
	B. What is a Critical Section? List the requirements (properties) that a solution to this		
	Problem has to satisfy? Discuss in detail Peterson		
	solution to critical section		
	Problem		
	A. Given memory partitions of 100k, 500k, 200k, 300k, and	Explain	
	600k (in order), apply first fit and best fit algorithms to place	1	
	processes with the space requirement of 212k,417k, 112k and		
	426k (in order)? Which algorithm makes the most effective use		
18	of memory? (10)		understand
	(OR)		
	B. Write in detail about any three page replacement		
	algorithms		
	A. Explain various RAID Levels in detail.(10)	Assess	
	(OR)		
10	B. Suppose that a disk drive has 5000 cylinders, numbered 0		
19	to 4999. The drive is currently serving a request at cylinder		Skill
	143, and the previous request was at cylinder 125. The		
	queue 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130.		
	Starting from the current head position, what is the total		

	distance (in cylinders) that the disk arm moves to satisfy all the pending requests, for each of the following disk scheduling algorithms? FCFS, SSTF, SCAN, LOOK, C- SCAN, C-LOOK		
	A. Write in detail about design principles of linux systems	Explain	
20	(OR)		understand
	B. Write short note on protection in windows		

Course Code	Course Name	L	Т	Р	Credits
MSCT22	NETWORKS	3	0	0	3

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Describe the fundamental concepts of Networking and Physical layer	Remember
CO 2	Understand details and functionality of Data link layer.	Understand
CO 3	Analyze switching protocols and routing algorithms	Analyze
CO 4	Analyze features, services and operations of various protocols of TCP/IP suite	Analyze
CO 5	Identify various application layer protocols and its functions	Skill

Units	Content	Hrs.
	APPLICATION LAYER Network Architecture – Layers - HTTP –	
Ι	DNS – E-Mail (SMTP, MIME, POP3, IMAP, Web Mail), FTP, Telnet -	9
	SNMP.	
т	TRANSPORT LAYER User Datagram Protocol (UDP) – Transmission	0
11	Control Protocol (TCP) – Details - Flow Control – Congestion Control	9
	- Queunig Discipline - Introduction to Quanty of services (QOS).	
	Circuit Switching ID ADD DUCD ICMD Douting - VITUAL	
III	Circuit Switching – IP – ARP – DHCP – ICMP – Kouting – KIP – OSPF	9
	- Subhetting - CIDK - Interdomani Routing - BOF - IFVO Basic Eastures Multicest Congestion Avoidance in Network Laver	
	DATA LINK LAVED Channel access on links TDMA EDMA	
	DATA LINK LATEK Chamier access on miks – IDMA – FDMA –	
IN/	Laver Framing From correction and detection Link Lavel Flow	0
1 V	Control Modium Access Ethernot Tokon Ding EDDI Wireless	9
	LAN Bridges and Switches	
	PHVSICAL LAVEP Data Transmission Transmission Media Signal	
V	$E_{\rm n}$ E_{\rm	9
	References:	
	1 James F Kurose Keith W Ross "Computer Networking A Ton-	
	Down Approach Featuring the Internet". Sixth Edition. Pearson	
	Education, 2012.	
	2. Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems	
	Approach", Fifth Edition, Morgan Kaufmann Publishers Inc., 2012.	
	3. William Stallings, "Data and Computer Communications", Eighth	
	Edition, Pearson Education, 2011	
	4. Ying-Dar Lin, Ren-Hung Hwang and Fred Baker, Computer	
	Networks: An Open Source Approach ", McGraw Hill Publisher, 2011.	
	5. Behrouz A. Forouzan, "Computer Netwroks - A top-down approach",	
	Tata McGraw-Hill, 2012.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	3	1	1	1	3
CO2	3	2	3	1	1	1	3
CO3	3	3	3	2	3	1	1
CO4	3	3	2	1	1	1	3
CO5	3	2	3	1	1	1	3

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	-	-	2	-	-
Seminar	-	-			2
Test	8	8	6	8	6
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part - A	2	2	2	2	2
$(Objective - 10 \times 1 = 10 \text{ marks})$					
(Short Answer - $5 \times 3 = 15$ marks)	3	3	3	3	3
Part $- C$ (Essay- 5 x 7 = 35 marks)	7	7	7	7	7
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence &facts andexamples	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	Ideas are presented but not particularly developed or supported;	Content is not sound	Not attended	CO3

2	Organiza -tion 50%	Includes title, introduction, statement of the main idea with illustration and Conclusion.	Includes title, introduction, statement of main idea and Conclusion.	organizational tools are weak or missing	No organization	Not attended	CO3
---	--------------------------	---	--	---	--------------------	-----------------	-----

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Knowledge and Understandin g 50%	Exceptional knowledge of facts, terms, and concepts	Detailed knowledge of facts, terms, and concepts	Considerable knowledge of facts, terms, and concepts	Minimal knowledge of facts, terms, and concepts	Not Attende d	CO5
2	Presentation 50%	Well Communicate d with logical sequences, examples, and references	Communicate d with sequences	Just Communicate d	No coherent communicatio n	Not Attende d	CO5

i. Model Question Paper

SI. No	Model Questions	Specificati on	Level
	Part – A: Objective Type Multiple Choice Marks: 10 x 1 = 10		
1	The Internet's application layer includes many protocols, such as the protocol (which provides for Web document request and transfer), (which provides for the transfer of e-mail messages), and (which provides for the transfer of files between two end systems).	Recognize	Remember
2	Match the following a. <u>Field</u> A. UDP Header's Port Number B. Ethernet MAC Address C. IPv6 Next Header	<u>Length in</u> <u>bits</u> I. 32 II. 16 III. 48	Remember

	D. TCP Header's Sequence Number	IV. 8	
3	 The address resolution protocol (ARP) is used for (A) Finding the IP address from the DNS (B) Finding the IP address of the default gateway (C) Finding the IP address that corresponds to a MAC address (D) Finding the MAC address that corresponds to an IP address. 	Recognize	Remember
4	 Which one of the following fields of an IP header is NOT modified by a typical IP router? (A) Checksum (B) Source address (C) Time to Live (TTL) (D) Length. 	Recognize	Remember
5	 Which one of the following is TRUE about the interior gateway routing protocols, Routing Information Protocol (RIP) and Open Shortest Path First (OSPF)? (A)RIP uses distance vector routing and OSPF uses link state routing (B) OSPF uses distance vector routing and RIP uses link state routing (C) Both RIP and OSPF use link state routing (D) Both RIP and OSPF use distance vector routing. 	Recognize	Remember
6	Let the size of congestion window of a TCP connection be 32 KB when a timeout occurs. The round trip time of the connection is 100 msec and the maximum segment size used is 2 KB. The time taken (in msec) by the TCP connection to get back to 32 KB congestion window is (A) 1100 to 1300 (B) 800 to 1000 (C) 1400 to 1600 (D) 1500 to 1700	Recognize	Remember
7	The address of a class B host is to be split into subnets with a 5-bit subnet number is the maximum number of subnets and the maximum number of hosts in each subnet.	Recall	Remember
8	An error correcting code has the following code words: 00000000, 00001111, 01010101, 10101010, 11110000. What is the maximum number of bit errors that can be corrected ? (A) 0 (B) 1	Recall	Remember

	(C) 2		
	(D) 3		
	DOM is an array 1 of		
	PCM is an example of conversion		
	(A) Digital to Digital		
9	(C) Digital to Analog	Identify	Remember
	(D) Analog to Analog		
10	cables carry data signals in the form of light.	Identify	Remember
	PART – B Short Answer		
	The answer should not exceed 200 words Marks:5 x 3 = 15		
11	Compare and contrast packet switching and circuit switching.	Difference	understand
12	Write short notes on SNMP	Explain	Understand
10		T 1 '	
13	Discuss any two Flow control protocols	Explain	Apply
14	Compare and contrast Bridges and switches	Difference	understand
15	Discuss Advantages and Disadvantages of optical fiber	Explain	Understand
	PART – C Essay Answer		
Th	e answer should not exceed 400 words Marks: 5 x 7 = 35		
	A DNS resolver typically issues a query using UDP but may also	Understand	
	use TCP. Is there a problem using TCP for this purpose? If so, what		
16	do you suggest is the solution?		A
10	(OR)		Арріу
	Compare and contrast various email protocols (SMTP, POP3 and		
	IMAP)		
	Discuss Klark's and Nagle's solution on congestion control in	Assess	
	detail.		
17	(OR)		Skill
	Discuss in detail TCP and UDP with respect to its header		
	Discuss about various routing protocols (inter domain routing).	Explain	
10	(OR)		
18	Compare and contrast Stop and Wait, Go-Back N and Selective		understand
	Repeat.		
	Discuss in detail about Error detection and correction techniques	Explain	
19	(OR)	1	understand
17	Describe various Multiple Access Protocols		understand
	Explain transmission media in detail.	Explain	
	(OR)	P-14111	
20	Explain various signal encoding techniques		understand
	Explain various signal encouring techniques		

Course Code	Course Name	L	Т	Р	Credits
MSCT23	Software Engineering	2	0	0	2

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

CO#	Course Outcome	Level
CO1	Understand the Fundamentals of Software Process Models	
CO2	Acquire knowledge on Principles of Requirement Engineering	
CO3	Learn design concepts with architectural design, component-level design and user interface design	
CO4	Apply software testing strategies on real world problems, testing conventional applications and testing object-oriented applications	
CO5	Familiarize with software configuration management, estimation of software projects, project scheduling and risk management maintenance.	

Units	Content	Hrs.
	Software Process Models	
	The Evolving role of Software – Software – The changing Nature of	
	Software – Legacy software — A generic view of process– A layered	
	Technology – A Process Framework – The Capability Maturity Model	
т	Integration (CMMI) – Process Assessment – Personal and Team Process	0
L	Models – Product and Process – Process Models – The Waterfall Model	9
	- Incremental Process Models - Incremental Model - The RAD Model	
	– Evolutionary Process Models – Prototyping – The Spiral Model – The	
	Concurrent Development Model - Specialized Process Models - the	
	Unified Process - Agile development.	
	Requirement Engineering	
	Software Engineering Practice – communication Practice – Planning	
	practice Modeling practice– Construction Practice –Deployment.	
п	Requirements Engineering – Requirements Engineering tasks – Initiating	0
11	the requirements Engineering Process- Eliciting Requirements -	7
	Developing Use cases – Building the Analysis Models – Elements of the	
	Analysis Model – Analysis pattern – Negotiating Requirements –	
	Validating Requirements.	
	Analysis Modelling	
ш	Requirements Analysis – Analysis Modeling approaches – data modeling	9
	concepts - Object oriented Analysis - Scenario based modeling - Flow	-
	oriented Modeling – Class based modeling – creating a behaviour model.	
	Design & Testing	
	Design Engineering – Design process -Design Quality-Design model-User	
IV	interface Design – Testing strategies- Testing Tactics - strategies Issues	9
	for conventional and object oriented software-validation testing –system	
	testing –Art of debugging – Project management	
	Quality & Maintenance	
	Software evolution - Verification and Validation -Critical Systems	
V	Validation – Metrics for Process, Project and Product-Quality	9
	Management -Process Improvement –Risk Management Configuration	
	Management – Software Cost Estimation	

References:	
1. Roger S.Pressman, Bruce R. Maxim, Software Engineering: A	
Practitioner's Approach, McGraw Hill International edition, Eighth	
edition, 2015.	
2. Ian Sommerville, Software Engineering, 10th Edition, Pearson	
Education, 2015.	
3. Stephan Schach, Object Oriented and classical Software Engineering,	
8th edition, Tata McGraw Hill, 2016	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	1	2	1	2	2
CO2	3	2	2	2	0	2	1
CO3	3	3	1	1	0	2	1
CO4	3	3	3	2	1	2	2
CO5	2	2	1	1	0	1	2

(3 – High, 2 – Moderate, 1 – Low, 0 – No correlation)

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	2	2	2
Test	6	6	6	6	6
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Short Answer - 5 x 5= 25 marks)	3	3	3	3	3
Part – C (Essay- 5 x 7 = 35 marks)	9	9	9	9	9
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	Ideas are presented but not particularly developed or supported;	Content is not sound	Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	Includes title, introduction, statement of the main idea with illustration and conclusion.	Includes title, introduction, statement of main idea and conclusion.	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

Course Code	Course Name	L	Т	Р	Credits
MSCT24	WEB TECHNOLOGY	3	0	0	3

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Understand the principles of www and concepts of web clients and web servers	Understand
CO 2	Interpret the key responsibilities and functionalities of different internet technologies	Apply
CO 3	Demonstrate Markup languages and illustrate the working of it	Apply
CO 4	Analyze the different client-side scripting/programming languages	Analyze
CO 5	Explain and demonstrate server-side, presentation and database technologies	Understand

Units	Content	Hrs.
Ι	Internet Principles – basic web concepts – Client/ server model – Retrieving data from Internet –Internet Protocols and applications	9
II	HTML forms – HTML tags emulation – Links and addressing- HTML and Images	9
Ш	Streaming – Networking Principles – Sockets for Clients – Sockets for Servers – Protocol Handlers – Content Handlers – Multicast sockets – Remote method Invocation.	9
IV	Scripts - Java Script, VB Script, DHTML, XML, CGI, Servlets.	9
V	Server Scripts - Java Sever Pages (JSP), Active Server pages (ASP), Simple applications – On-line databases – Monitoring user events – Plug-ins – Database connectivity.	9
	 Text Books: 1. Eillotte Rusty Harold, "Java Network Programming", O"Reilly Publications, 1997. 2. Harvey M. Deitel and Paul J. Deitel, "Internet & World Wide Web How to Program", 4th edition, 2008. 3. N. P. Gopalan and J. Akilandeswari, "Web Technology – A Developer"s Perspective", PHIO Pvt Ltd., New Delhi-, 2007. Reference Books: 1. Jason Hunter and William Crawford, "Java Servlets Programming", O"Reilly Publications, 1998. 2. Jeff Frantzen and Sobotka, "Java Script" Tata McGraw Hill, 1999. 3. Eric 	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	0	3	2	2	3	1	1
CO2	1	3	2	2	3	1	2
CO3	0	3	2	3	3	1	2
CO4	1	3	3	3	3	1	2
CO5	1	3	3	2	3	1	2 S

(3 – High, 2 – Moderate, 1 – Low, 0- No correlation)

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Seminar	2	-	2	-	-
Test	6	8	6	8	8
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Objective - $10 \times 1 = 10$ marks)	2	2	2	2	2
Part – B (Short Answer - 5 x 3 = 15 marks)	3	3	3	3	3
Part – C (Essay- 5x 7 = 35 marks)	7	7	7	7	7
Total	12	12	12	12	12

g. Rubric for Seminar

SI. No	Criteria	100%	75%	50%		25%	0%	Relatio n to COs
1	Content - Knowledge & understanding a)Relevance to the Topic b)Organization and Structure c)Good Conclusions with d)References e) Audio and	Exceptional knowledge of facts, terms, and concepts	Detailed knowledge of facts, terms, and concepts	Considerable knowledge of facts, terms, and concepts	Mi kno fac anc	nimal owledge of ts, terms, l concepts	Not Attende d	CO3, CO4
2	50% Presentation & Delivery a) Voice b) Confidence c) Viva 50%	Well Communica ted with logical sequences, examples, and references	Communicate d with sequences	Just Communicat ed	No cor n	o coherent mmunicatio	Not Attende d	CO3, CO4
h. N Sl.	Model Question	Paper	0			G		
No.		Model	Questions			Specificati	on L	evel
	Mult	Part – A: O iple choice	bjective Type 10 x 1	= 10				
1	HTTP is a netwo a) True b) False	ork layer prot	ocol.			Recall	Ren	nember
2	Which of the following transport layer protocol used by 2 SMTP for email transmission. a) TCP b) UDP c) Both the above d) None of the above					Recall	Ren	nember
3	Which of the following tag inserts a line horizontally to a webpage? a) <hr/> b) < line > c) < line direction="horizontal"> d) all the above					Recognize	e Und	erstand
4	Which of the fol a) b) c	lowing used c) <dl> d)<lis< th=""><th>to make a bulle st></th><th>ted list?</th><th></th><th>Recognize</th><th>e Und</th><th>erstand</th></lis<></dl>	to make a bulle st>	ted list?		Recognize	e Und	erstand
5	Wed sockets sup	port full dup	lex communica	tion.		Recognize	e Ren	nember

	a) True b) False		
6	A network can receive a multicast packet from a particular source only through adesignated parent resolver. a) True b) False	Identify	Analyze
7	The relationship of multicast communication is a) one to one b) one to many c) many to one d) many to many	Recall	Understand
8	What XML schema type can be used to contain other elements and attributes?a) Simple Type b) Complex Type c) In built Type d) None of the above	Recall	Remember
9	jspDestroy() method of HttpJspPage class can be overridden. a) True b) False	locate	Understand
10	ASP.NET Core is a new web framework from the Microsoft. a) Tru e b) False	Examine	Analyze
	PART – B Short Answer Answer any Five questions 5 x 3 = 15		
1	a) Differentiate FTP and Telnet.orb) Compare and contrast P2P and Client-server architecture	Differentiate	Analyze
2	a) Illustrate HTML document structure.orb) Explain how to embed an image in a web page.	Illustrate	Understand
3	 a) Explain the applications of multicast sockets. or b) Describe URL handlers. 	Explain	Understand
4	 a) Describe JavaScript Display Possibilities using inner HTML. or b) Differentiate client-server scripting and server-side scripting. 	Describe	Remember
5	a) State the advantages of JSP over ASP.orb) Write CGI script in python.	State	Remember
	PART – C Essay Answer 5x 7= 35		
1	Explain the protocol format and working principle of UDP in detail.	Explain	Understand
2	Describe HTML form attributes and elements with examples in detail.	Describe	Remember
3	Illustrate the architecture of RMI.	Illustrate	Understand
4	Write JavaScript code to create and read cookies	Write	Create
5	Explain the lifecycle of JSP in detail	Explain	Understand

Course Code	Course Name	L	Т	Р	Credits
MSCT25	Theory of Computation	3	0	0	3

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

CO#	Course Outcome	Level
CO1	Model, compare and analyze different computational models using	Understand
	combinatorial methods	
CO2	Apply rigorously formal mathematical methods to prove properties of	Apply
	languages, grammars and automata	
CO3	Learn the Push Down Automata and apply Pumping Lemma	Understand
CO4	Design Turning Machines for simple problems	Apply
CO5	Understand the theoretical aspects of Polynomial time and Non-	Remember
	Deterministic Polynomial Time	Understand

Units	Content	Hrs.
Ι	FINITE AUTOMATA Introduction- Basic Mathematical Notation and techniques- Finite Automata (FA) – Deterministic Finite Automata (DFA) – Non- deterministic Finite Automata (NFA) - Finite Automaton with \in - moves- Regular Languages - Regular Expression - Proving languages not to be regular – Closure properties of regular languages - Equivalence of NFA and DFA - Equivalence of NDFA's with and without \in -moves - Minimization of DFA - Pumping Lemma for Regular Language- Its use as an adversarial game.	9
п	CONTEXT FREE GRAMMARS (CFG) AND LANGUAGES Notion of Grammars and languages generated by grammars - Parse Trees - Derivations and Languages – Ambiguity - Relationship between derivation and derivation trees - Simplification of CFG - Elimination of Useless symbols - Unit productions - Null productions - Greiback Normal form (GNF) – Chomsky normal form (CNF) - Problems related to CNF and GNF- applications to compliers.	9
III	PUSHDOWN AUTOMATA (PDA) Definition of the Pushdown automata – Languages of a Pushdown Automata – Moves - Instantaneous descriptions - Deterministic and Nondeterministic pushdown automata - Equivalence of Pushdown automata and CFL - pumping lemma for CFL - Closure Properties of CFL - problems based on pumping Lemma.	9
IV	TURING MACHINES Definitions of Turing machines - Models – Universal Turing machine - Deterministic and Nondeterministic Turing machines Computable languages and functions - Techniques for Turing machine construction - Multi head and Multi tape Turing Machines - The Halting problem -Partial Solvability - Problems about Turing machines.	9
V	UNDECIDABALITY AND INTRACTABILITY A language that is not Recursively Enumerable (RE) - An undecidable problem that is RE - Undecidable problems about Turing Machine - Post's Correspondence Problem - Measuring and Classifying complexity:	9

Tractable and Intractable problems- Tractable and possibly intractable problems – P and NP.
Tasks and Assignments:
✓ Each student is required to submit the assignments in time following the code of honest
Text Books and References:
1. Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata
Theory, Languages and Computations", Second Edition, Pearson
Education, 2008. (UNIT 1,2,3)
2. John C Martin, "Introduction to Languages and the Theory of
Computation", Third Edition, Tata McGraw Hill Publishing Company,
New Delhi, 2007. (UNIT 4,5)
3. Dexter C. Kozen, "Automata and Computability", Springer-Verlag
Berlin Heidelberg, 1977.
4. Mishra K L P and Chandrasekaran N, "Theory of Computer Science –
Automata, Languages and Computation", Third Edition, Prentice Hall of
5. Harry R Lewis and Christos H Papadimitriou, "Elements of the Theory
of Computation", Second Edition, Prentice Hall of India, Pearson
Education, New Delni, 2003.
6. Peter Linz, "An Introduction to Formal Language and Automata",
Third Edition, Narosa Publishers, New Delhi, 2002.
/.iviicneal Sipser, "introduction of the Theory and Computation",
I nomson Brokecole, 1997.
8. J. Marun, Introduction to Languages and the Theory of computation"
1 nird Edition, 1 ata MC Graw Hill, 2007.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	2	0	2	0
CO2	3	3	3	1	1	2	0
CO3	3	3	3	3	1	2	0
CO4	3	3	3	3	2	2	1
CO5	2	2	2	2	1	2	2

(3 – High, 2 – Moderate, 1 – Low, 0 – No correlation)

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	2	2	2
Test	6	6	6	6	6

Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (5 * 3 = 15 marks)	3	3	3	3	3
Part – B (5 * 9 = 45 marks)	9	9	9	9	9
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 70%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	Ideas are presented but not particularly developed or supported;	Content is not sound	Not attended	CO1, CO2, CO4
2	Organiza -tion 30%	Includes title, introduction, statement of the main idea with illustration and conclusion.	Includes title, introduction, statement of main idea and conclusion.	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO4

Course Code	Course Name	L	Т	Р	Credits
MSCT31	NETWORK AND SYSTEM SECURITY	3	0	0	3

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Deploy measures for data protection by ensuring to confidentiality, integrity, authentication and non-repudiation and identify the requirements to implement access control mechanisms for the given system scenario.	Understand
CO 2	Appreciate the usage of Number theory in design of cryptographic algorithms and examine the strength of any cryptographic algorithm by crypt analysis	Analyze
CO 3	Use various authentication and security protocols such as SSL, IP Sec etc., at different layers of TCP/IP stack to develop security solutions	Apply
CO 4	Comprehend the usage of firewalls and Intrusion Detection Systems for securing data.	Analyze
CO 5	Illustrate appropriate mechanisms for protecting information systems by addressing security management issues	Understand

Units	Content	Hrs.
Ι	Overview of information security: confidentiality, integrity, and availability Understanding the Threats: Malicious software (Viruses, trojans, rootkits, worms, botnets), Memory exploits (buffer overflow, heap overflow, integer overflow, format string) Formalisms: Access control theory, access control matrix, Information flow Policy: Security policies, Confidentiality policies (BLP model), Integrity policies (Biba, and Clark-Wilson model), Hybrid policies (Chinese Wall model, role- based access control)	9
Π	Implementation: Cryptography Block and stream ciphers, Cryptographic hash functions, Message Authentication Codes (MAC), Public and private key systems, Authentication, Password system	9
ш	Implementation: Systems TCB and security kernel construction, UNIX security and Security-Enhanced Linux (SELinux)	9
IV	Network Security: TCP/IP security issues, DNS security issues and defenses, TLS/SSL, Intrusion detection and prevention systems, Firewalls	9
V	Software Security: Sandboxing, Control flow integrity - Web Security: User authentication, authentication-via-secret and session management Legal and Ethical Issues: Hacking and intrusion, Privacy, identity theft.	9
	 Reference books: 1. Computer Security Arts and Science by Matt Bishop, (2nd Ed), Addison wesley. 2. William Stallings. Network Security Essentials (2nd edition). Prentice Hall. 2003. 	

3.	Saadat Malik. Network Security Principles and Practices Pearson	
	Education.2002.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	1	2	2	2	3	1	1
CO2	3	3	2	3	3	1	2
CO3	2	2	2	2	3	1	2
CO4	1	2	2	2	3	1	2
CO5	2	2	2	2	3	1	2

(3 – High, 2 – Moderate, 1 – Low, 0- No correlation)

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Seminar	-	-	2	2	-
Test	8	8	6	6	8
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Short Answer - 5 x 5 = 25 marks)	5	5	5	5	5
Part – B (Essay- 5x 7 = 35 marks)	7	7	7	7	7
Total	12	12	12	12	12

g. Rubric for Seminar

SI. No ·	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
----------------	----------	------	-----	-----	-----	----	------------------------

1	<u>Content -</u> <u>Knowledge &</u> <u>understandin</u> <u>g</u> a)Relevance to the Topic b)Organizatio n and Structure c)Good Conclusions with d)References e) Audio and <u>50%</u>	Exceptional knowledge of facts, terms, and concepts	Detailed knowledge of facts, terms, and concepts	Considerable knowledge of facts, terms, and concepts	Minimal knowledge of facts, terms, and concepts	Not Attende d	CO3, CO4
2	Presentation & Delivery a) Voice b) Confidence c) Viva 50%	Well Communicate d with logical sequences, examples, and references	Communicate d with sequences	Just Communicate d	No coherent communicatio n	Not Attende d	CO3, CO4

h. Model Question Paper

SI. No.	Model Questions	Specification	Level
	PART – A Short Answer		
	Answer the questions $(5 \times 5 = 25)$		
1	Brief on security policies in detail.	Brief	Understand
2	Analyze the operation modes of block cipher/	Analyze	Analyze
3	How would you create security kernel using Trusted Computing base?	Use	Remember
4	Discuss in detail about intrusion detection and prevention systems	Discuss	Remember
5	Interpret about different kinds of Web security issues.	Interpret	Apply
	PART – B Essay Answer		
	Answer the questions (5x 7= 35)		
1	Explain in detail about Bell-LaPadula and Biba security models.	Explain	Understand
2	A wants to send an encrypted message to B. The message contains English alphabets (a-z) and numeric digits (0-9). Use affine cipher to encrypt message "happy new year 2022".	Write	Create

3	Illustrate the Scomp TCB rings and explain the different ways of handling SELinux Errors.	Illustrate	Apply
4	Examine the operations of Distributed Denial of Service attack	Examine	Analyze
5	How would you explain the main attacks against authentication and session management mechanisms?	Explain	Understand

Course Code	Course Name	L	Т	Р	Credits
MSCT32	Data science and Analytics	3	0	0	3

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

CO#	Course Outcome	Level
CO1	Understand the concepts of Big Data Analytics	Understand
CO2	Learn the components of Map Reduce and Hadoop Eco-System	Understand
CO3	Ability to use SPARK	Apply
CO4	Ability to use NOSQL	Apply
CO5	Learn to plot data	Apply

Units	Content	Hrs.
Ι	INTRODUCTION TO DATA SCIENCE Data science process – roles, stages in data science project – working with data from files – working with relational databases – exploring data – managing data – cleaning and sampling for modeling and validation – introduction to NoSQL.	9
п	INTRODUCTION TO R Reading and getting data into R – ordered and unordered factors – arrays and matrices – lists and data frames – reading data from files – probability distributions – statistical models in R - manipulating objects – data distribution.	9
ш	MAP REDUCE Introduction – distributed file system – algorithms using map reduce, Matrix-Vector Multiplication by Map Reduce – Hadoop - Understanding the Map Reduce architecture - Writing Hadoop MapReduce Programs - Loading data into HDFS - Executing the Map phase - Shuffling and sorting - Reducing phase execution.	9
IV	INTRODUCTION TO BIG DATA Introduction to Big Data Platform – Challenges of Conventional Systems - Five Vs - Intelligent data analysis – Nature of Data – Big data analytic processes - Ingesting data into the system - Persisting the data in storage - Computing and Analyzing data - Visualizing the results – Big data tools	9
V	INTRODUCTION TO SPARK Introduction to data analysis with spark - Programming with RDDs – working with key value pairs – loading and saving your data – Spark SQL – Spark Streaming – Apache spark MLIB - Machine Learning with MLib – Development of real time applications using SPARK	9
	 REFERENCES 1. Nina Zumel, John Mount, "Practical Data Science with R", Manning Publications, 2014. 2. Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman, "Mining of Massive Datasets", Cambridge University Press, 2014. 3. Mark Gardener, "Beginning R - The Statistical Pr ogramming Language", John Wiley & Sons, Inc., 2012 	

4. Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, "Professional	
Hadoop Solutions", Wiley, ISBN: 9788126551071, 2015.	
5. Chris Eaton, Dirk deroos et al., "Understanding Big data", McGraw	
Hill, 2012.	
6. Tom White, "HADOOP: The definitive Guide", O Reilly 2012.	
7. Spark - The Definitive Guide, Bill Chambers and Matei Zaharia, 2018,	
O'Reilly Media, Inc, USA, ISBN10 1491912219, ISBN13 9781491912218	
8. Holden Karau, Andy Konwinski, Patrick Wendell & Matei Zaharia,	
Learning Spark Lightning-Fast Data Analysis, ISBN-13: 978-1449358624,	
ISBN-10: 1449358624, O'Reilly, 2015	
9. Josh Wills, Sandy Ryza, Sean Owen, and Uri Laserson, Advanced	
Analytics with Spark: Patterns for Learning from Data at Scale 2nd Edition,	
O'Reilly, 2016	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	1	2	1	2	2
CO2	3	2	2	2	0	2	1
CO3	3	3	1	1	0	2	1
CO4	3	3	3	2	1	2	2
CO5	2	2	1	1	0	1	2

(3 – High, 2 – Moderate, 1 – Low, 0 – No correlation)

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments		2		2	
Test	8	6	8	6	8
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Short Answer - 5 x 5= 25 marks)	3	3	3	3	3
Part – C (Essay- 5 x 7 = 35 marks)	9	9	9	9	9
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	Ideas are presented but not particularly developed or supported;	Content is not sound	Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	Includes title, introduction, statement of the main idea with illustration and conclusion.	Includes title, introduction, statement of main idea and conclusion.	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

Course Code	Course Name	L	Т	Р	Credits
MSCT33	Advanced Programming in Java	2	0	0	2

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

CO#	Course Outcome	Level
CO1	Understanding Object-Oriented programming concepts using basic syntaxes of control Structures, strings for developing skills of logic building activity using Java	Understand
CO2	Identification of classes, objects, members of a class and the relationships among them needed for a finding the solution to specific problem	Remember
CO3	Illustration to achieve reusability using inheritance, interfaces, and packages and describes faster application development can be achieved with exception handling mechanisms	Understand Apply
CO4	Understanding concept of multithreading for robust faster and efficient application development and applications of collection interfaces in Java	Understand Apply
CO5	Learning of various I/O operations, connecting Java with databases using JDBC and implementation of networking with Java	Understand Apply

b. Syllabus

Units	Content	Hrs.
Ι	Concepts of Object Oriented Programming- Encapsulation, inheritance, polymorphism	9
Π	Introduction to Java – Data types, variables, operators, control statements	9
ш	Introduction to classes, declaring objects, data fields, methods, Inheritance, packages and interfaces	9
IV	Exception handling, multithreading, generics	9
V	GUI development- Introduction to AWT and Swing Classes, Input/Output, file handling, Applet class. Introduction to Java Collections	9
	Reference	
	Schildt : Java Fundamentals : A comprehensive Introduction	

c. Mapping of Program Outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	1	2	1	2	2
CO2	3	2	2	2	0	2	1
CO3	3	3	1	1	0	2	1
CO4	3	3	3	2	1	2	2
CO5	2	2	1	1	0	1	2

(3 – High, 2 – Moderate, 1 – Low, 0 – No correlation)

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments		2		2	
Test	8	6	8	6	8
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Short Answer - 5 x 5= 25 marks)	5	5	5	5	5
Part – C (Essay- 5 x 7 = 35 marks)	7	7	7	7	7
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	Ideas are presented but not particularly developed or supported;	Content is not sound	Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	Includes title, introduction, statement of the main idea with illustration and conclusion.	Includes title, introduction, statement of main idea and conclusion.	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

Course Code	Course Name	L	Т	Р	Credits
MSCT41	Web Services	3	0	0	3

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO1	Understand web protocols	Understand
CO2	Learn the principles of SOAP and other web services' functionalities	Remember
CO3	Identify the recent technologies and their usage to demonstrate web-based applications	Understand
CO4	Ability to develop web-based transactions	Create
CO5	Ability to develop web applications with possible web service functionalities	Analyze

Units	Content	Hrs.
I	Web Technology - Web 2.0 technologies, Introduction to Ajax, Ajax Design Basics, Introduction to WWW, TCP/IP, HTTP, ARP, ICMP FTP, UDP, routing protocols (RIP,OSPF, BGP), Network Management Protocols (SNMP), and Application-level protocols(FTP, TELNET, SMTP), URL, Web Browsers, Web Servers.	9
II	Web services, Evolution and differences with Distributed computing, XML - Name Spaces -Structuring With Schemas and DTD - Transformation - XML Infrastructure WSDL, SOAP,UDDI, ebXML - SOAP And Web Services in E-Com - Overview Of .NET And J2EE.	9
ш	Platform for Web Services Development, MVC Design Pattern, Web services - EJB, .NET,J2EE Architecture, J2EE Components & Containers, Specification, Application servers,Struts,Introduction to JSON.	9
IV	Web Transactions, Coordination, Orchestration, and Choreography – tools BPEL, WS- CDLOverview of Web service standards -BPEL4WS. WS-Security and the Web services securityspecifications, WSReliable Messaging, WS-Policy, WS-Attachments	9
V	Web Service Case Study - Web Service Search Engine, Web Service Discovery, Web ServiceComposition. Web Service – SOAP vs Web Service – REST.	9
	 Text Books: 1. Deitel, and Nieto, "Internet and World Wide Web – How to program", Pearson EducationPublishers, 2000. 2. Elliotte Rusty Harold, "Java Network Programming", O'Reilly Publishers, 2002. 3. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, " Developing Java WebServices", Wiley Publishing Inc., 2004. 4. R. Krishnamoorthy & S. Prabhu, "Internet and Java Programming", New AgeInternational Publishers, 2004. 	

5. Frank. P. Coyle, "XML, Web Services and the Data Revolution",	
Pearson Education,2002.	
6. Sandeep Chatterjee and James Webber, "Developing Enterprise Web	
Services", PearsonEducation, 2004.	
7. McGovern, et al., "Java Web Services Architecture", Morgan	
Kaufmann Publishers, 2005.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	1	2	2	2	3	2	1
CO2	1	2	2	3	2	1	1
CO3	0	1	1	2	2	1	1
CO4	1	1	2	2	3	1	2
CO5	1	2	2	2	2	1	2

(3 - High, 2 - Moderate, 1 - Low, 0 - No correlation)

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	-	-	-	2
Test	6	8	8	8	6
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A	2	2	2	2	2
(Objective - 10 x 1 = 10 marks)	4	4	4	4	4
Part – B	2	2	2	2	2
(Short Answer - 5 x 3 = 15 marks)	3	3	3	3	3
Part – C	7	7	7	7	7
(Essay- 5x 7 = 35 marks)	1	/	1	/	/
Total	12	12	12	12	12

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Exemplary - Your answer contains rich details - step by step illustration with proper observations and evidences	Fair - The answer has few pieces of observations and evidences	Acceptable – Needs improvement Ideas are presented but not particularly developed or supported.	Poor - The answer does not describe any reflection about the actual usage	Not attended	CO1, CO5
2	Organiza -tion 50%	Includes title, introduction, Objectives, Flow diagram, Methodology, Conclusion and References	Includes title, introduction, statement of main idea and conclusion.	Proper structuring are weak or missing	No organization	Not attended	CO1, CO5

h. Model Question Paper

Sl. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
1	AJAX based on a) JavaScript and XML b) VBScript and XML c) JavaScript and Java d) JavaScript and HTTP requests	Recall	Remember
2	Most famous HTTP response error "Not Found", code is a) 400 b) 404 c) 405 d) 408	Recognize	Remember
3	With DTD, each of your XML files can carry aof its own format with it.a) datab) controlc) descriptiond) data andcontrol	Recognize	Understand
4	Elements with only character data are declared with	Recognize	Understand

	a) #CHAR b) #TEXT c)#PCDATA d) #CDATA		
5	 Which of the following is correct list of classifications of design patterns. a) Creational, Structural and Behavioral patterns. b) Executional, Structural and Behavioral patterns. c) Creational, Executional and Behavioral patterns. d) None of the above. 	Explain	Remember
6	The ASP & JSP technologies are quite similar in the way they support the creation of dynamic pages using HTML templates, scripting code and components for business logic a) True b) False	Examine	Analyze
7	 Which of the following messaging protocol is used with XML in BHEL? a) WS coordination b) WS policy c) WS addressing d) All the above 	Recall	Understand
8	 Which of the following is a security issue with web services? a) Confidentiality b) Authentication c) Network Security d) All of the above. 	Recall	Remember
9	 Which of the following layer in Web Service Protocol Stack is responsible for centralizing services into a common registry and providing easy publish/find functionality? a) Service Transport b) XML Messaging c) Service Description d) Service Discovery 	Memorize	Understand
10	Which of the following is true about caching in RESTful web service?	Identify	Understand

	a) Caching refers to storing server response in client itself		
	so that a client needs not to make server request for same		
	resource again and again.		
	b) A server response should have information about how a		
	caching is to be done so that a client caches response for a		
	period of time or never caches the server response.		
	c) Both of the above.d) None of the above.		
	PART – B Short Answer		
	Answer any Five questions 5 x 3 = 15		
1	Explain the functions of ICMP.	Explain	Understand
2	Compare SOAP and REST web services	Compare	Analyze
3	Differentiate XML and HTML with example script	Compare	Analyze
4	Brief on WS-attachments	Brief	Understand
5	Discuss WS search engine	Discuss	Understand
	PART – C Essay Answer 5x 7= 35		
	Answer any Five questions		
1	.(a) Analyze Routing Information Protocol (RIP) with suitable example .Or(b) Elicit the features of FTP model.	Elicit /Analyze	Analyze
2	a) Interpret WSDL elements	Interpret	Apply
2	(b) Demonstrate web service architecture.	interpret	rippiy
3	 a) Discuss the pattern which specifies data model, presentation and control information. or (b) Explain lifecycle of Java Applet (J2EE client). 	Explain	Understand
4	(a) Appraise BPEL activities in detail.Orb) Investigate on WS-policy model.	Appraise/ Investigate	Evaluate /Create
5	 (a) Explain web service composition Or (b) Discuss web service search engine 	Explain/Discuss	Understand

Course Code	Course Name	L	Т	Р	Credits
MSCT42	Distributed Computing	3	0	0	3

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

CO#	Course Outcome	Level
CO1	Apply knowledge of distributed systems techniques and methodologies.	Understand Apply
CO2	Explain the design and development of distributed systems and distributed systems applications.	Remember
CO3	Identify the advantages and challenges in designing distributed algorithms for different primitives like mutual exclusion, deadlock detection, agreement, etc.	Understand Apply
CO4	Design and develop distributed programs using sockets and RPC/RMI.	Understand Apply
CO5	Differentiate between different types of faults and fault handling techniques in order to implement fault tolerant systems.	Analyze

b. Syllabus

Units	Content	Hrs.
Ι	Distributed Systems - Goal - Advantages over centralized systems - Organization of multiprocessor systems - Hardware/software concepts - Review of layered protocols.	9
Π	Client/Server Model - Microkernel - RMI - Distributed algorithms - Time stamping - Circulating tokens - Diffusing computations.	9
III	Mutual Exclusion Algorithm - Election algorithm - Detecting loss of tokens and regeneration - Distributed deadlock detection algorithms - Distributed termination algorithms.	9
IV	File Replication - Semantics of file sharing - Remote access methods - Fault tolerant issues - Introduction to distributed operating systems.	9
V	Introduction to Distributed Operating Systems - Motivations - Management systems - Levels of distribution transparency - Architecture - Introduction to concurrency control.	9
	 Text / Reference Books: 1. George Coulouris and Jean Dollimore, and Tim Kindberg, "Distributed System Concepts and Design", 4th Edition, Addison Wesley, 2005 2. A. S. Tanenbaum, "Distributed Operating Systems", Prentice Hall, 1995. 3. S. Ceri and G.Pelagatti, "Distributed Databases - Principles and Systems", McGraw Hill, 1985. 	

c. Mapping of Program Outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	1	2	1	2	2
CO2	3	2	2	2	0	2	1
CO3	3	3	1	1	0	2	1
CO4	3	3	3	2	1	2	2
CO5	2	2	1	1	0	1	2

(3 – High, 2 – Moderate, 1 – Low, 0 – No correlation)

u. Evaluation Scheme							
	C01	CO2	CO3	CO4	CO5	Total	
Internal	8	8	8	8	8	40	
External	12	12	12	12	12	60	
Total	20	20	20	20	20	100	

d. Evaluation Scheme

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	-	-	-	2
Test	6	8	8	8	6
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Short Answer - 5 x 5= 25 marks)	2	2	2	2	2
Part – C (Essay- 5 x 7 = 35 marks)	3	3	3	3	3
Total	7	7	7	7	7
	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	Ideas are presented but not particularly developed or supported;	Content is not sound	Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	Includes title, introduction, statement of the main idea with illustration and conclusion.	Includes title, introduction, statement of main idea and conclusion.	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5