M.Sc. Microbiology Program Department of Microbiology School of Lifesciences Central University of Tamilnadu

A. Vision

Vision Statement of the Department

To disseminate knowledge across the theoretical and practical aspects of applied microbiology that is imperative for the development of scientific research in the country.

B. Mission

Mission Statements of the Department

M1	To impart knowledge and training across the different fields of microbiology in
	order to equip students for academics/industry.
	To enhance awareness of current research across various fields of microbiology
M2	and to bring student's knowledge to the latest state-of-the-art in their area of
	interest.
M3	To integrate theoretical and experimental learnings in order to encourage critical
M3	scientific thinking.

C. Program Educational Outcome (PEO)

After five years of successful completion of the program, the student will be able to

PEO1	Understand the basic concepts of all the dimensions in Microbiology
PEO2	Get an advanced outlook on the recent findings in all fields of Microbiology
PEO3	Develop critical and experimental thinking
PEO4	Become an insightful individual with an in depth understanding of various
1 EO4	research directions and methods
PEO5	Demonstrate precision in practical and experimental procedures

D. PEO to Mission Statement Mapping

	PEO1	PEO2	PEO3	PEO4	PEO5
M1	3	3	3	3	3
M2	3	3	3	3	3
M3	2	3	3	3	2

D. Graduate Attributes of M.Sc. Microbiology Program

1. **Disciplinary Knowledge:** Content and pedagogical knowledge synchronised with the curriculum frameworks and policies

2. Communication Skills: Possess clarity in conveying the ideas

3. Critical Thinking: Capacity to apply analytical thought in the teaching and learning process

4. **Problem Solving:** Participate in the educational problem solving and applying the knowledge in the day-to-day professional endeavours.

5. Cooperation: Appreciate collaboration and cooperation among stakeholders of education.

6. ICT Skills: Selecting and integrating appropriate ICT skills for professional development.

7. Ethics: Doing what is right to society

8. **Self-Directed Learning:** Developing autonomy and self-regulation in teaching-learning and professional development.

9. **Reasoning:** Ability to interpret and draw the conclusion from qualitative/quantitative data with open-mindedness

10. Creativity: Ability to produce new ideas

- 11. Societal and Environmental Concern: Performing an act or solving a problem with respect to societal and environmental concern
- 12. Lifelong Learning: Understands the need for learning and practices it throughout life

E. Program Outcomes_(PO)

On the successful completion of the program, the student will be able to

PO1	Understand basic and advanced microbiological concepts
PO2	In depth knowledge into other fields of biological sciences
PO3	Imbibe critical scientific thinking
PO4	Design and develop experimental protocols
PO5	Demonstrate efficacy in skilled experiments
PO6	Preparedness to engage in both academic and industrial sectors

F. PO to PEO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
PEO1	3	3	3	3	3	3
PEO2	3	3	3	2	2	3
PEO3	3	3	3	3	3	3
PEO4	3	3	3	2	2	3
PEO5	3	2	3	3	3	2

SEMESTER - I

Course Code	Course Name	L	Т	Р	Credits
CMB101	General Microbiology	2	1	0	3

a. Course Outcome (CO)

On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Explain the contribution of major scientists in the field of microbiology	Understand
CO 2	Explain various types of microscopies and principle involved	Apply
CO 3	Deals with the morphology and characteristic features of various microorganisms	Analyze
CO 4	Explains various extremophilic microbes and their mode of survival	Create
CO 5	Deals with various types of media and different sterilization techniques	Skill

Units	Content						
I	Scope and development Scope of microbiology, ancient microbiology - Refutation of a biogenesis: Discovery of penicillin: Discovery of vaccination: One-gene one-enzyme hypothesis, Contribution of scientists – Leeuwen hoeck, Edward Jenner, Alexander Fleming, Joseph Lister, Robert Koch, Louis Pasteur, Hargobind Khorrana. Modern Microbiology: Landmark	12					

		nd Assignments: nent sets, experiments and/ or seminars ned	on advanced topics will			
V	$ \begin{array}{c} 1\\ 2\\ 3\\ \end{array} $		Intelligence Personality Self-Concept			
	Practica S.No.	al (Any two) Apparatus and Tools	Concept			
V	Cultivation and control of microbesTypes of growth media (natural, synthetic, complex, enriched, selective- definition with examples), pure culture methods (streak plate, spread plate, pour plate, stab culture, slant culture). Anaerobic (thioglycollate, anaerobic chamber, Robertson's media, microaerophilic), liquid shake culture of aerobic bacteria, Control of microbes - sterilisation, disinfection, antiseptic, tyndalization, pasteurization: physical - dry heat, moist heat, UV light, ionizing radiation, filtration, HEPA filter, chemical methods.					
IV	Extremophiles Diversity of microorganisms of arctic, antarctic and hydrothermal vents – Archaeal biology - acidophile, alkaliphile, anaerobe, cryptoendolith, halophile, hyperthermophile, hypolith, lithoautotroph, metal-tolerant microbes, oligotroph, osmophile, piezophile, polyextremophile, psychrophile/cryophile, radio-resistant, thermophile, thermoacidophile, xerophile – mechanism of extremophiles.					
III	 Prokaryotic and Eukaryotic cells Differences between prokaryotic and eukaryotic cell. Biology of bacteria cell structure, size, shape, arrangement membrane, cell wall, cytoplasmic inclusions, mesosomes, flagella and motility, slime, glycocalyx, capsule, pili, chemotaxis, endospore - biology of cyanobacteria, structure, physiology and classification – biology of yeast reproduction - virus (bacteriophages) structure, life cycle (lytic and lysogenic) – biology of algae – mycoplasma – prions. 					
П	Microscopy Microscopy: Principle and application of light, dark-field, phase contrast, differential interference contrast (DIC), fluorescence, scanning and transmission electron microscopy, scanning tunneling microscopy, atomic force microscopy, confocal microscopy, cytophotometry and flow cytometry. Preparation of microbial, animal and plant samples for microscopy.					
	achievements in 20th century. Microbial taxonomy - Definition and systematics, Nomenclatural rules and identification. Haeckel's three kingdom classification, Whittaker's five kingdom approach - Woese domain system. Major characteristics used in taxonomy: Morphological, physiological and metabolic, genetic and molecular taxonomy. Second edition of Bergey's manual of systematic bacteriology – characteristic features of each volume with important phyla of each.					

Linda Sherwood, Joanne Willey Prescott (2016). Microbiology (10th edition)
(2016). Microbiology (10th edition)
erg J (2009). The Desk encyclopedia of
seiver Academic press, California.
duction to Fungi. (3rd edition). Cambridge
and Parker J Brock TD (2017). Biology
ion). Pearson.
ath, P.H.A and Williams, S.T. Bergey's
teriology (9th Edition), Williams and
3). The Handbook of Water and Waste-
tion) Academic CRC Press

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	2	2	1	3	2	2
CO5	1	1	1	1	2	3

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	-	-	2	2	-
Test	5	5	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	Ć03	CO4	CO5
Part – A	2	2	C	2	2
(Objective - 10 x 1 = 10 marks)	Δ.	2	L	2	Δ
Part – B	10	10			
(Short Answer - 5 x 4 = 20 marks)	10	10	-	-	-
Part – C			10	10	10
(Essay- 3 x 10 = 30 marks)	-	-	10	10	10
Total	12	12	12	12	12

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples		developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	statement of the main idea with illustration and	statement of	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	knowledge of facts, terms,	knowledge of facts, terms,	Considerable knowledge of facts, terms, and concepts	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	Presentation 50%	d with logical	Communicate d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

SI. No		Specification	Level
	Part – A: Objective Type		
	Multiple choice 10 x 1 = 10		

1	boiled the beef broth for an hour and sealed in a flask. No microbes observed during incubation. A. Lazzaro Spallanzani; B. Louis Pasteur; C. Anton von Leeuwenhock; D. Robert koch	Recognize	Remember
	gave the concept of Germ theory of disease, which means germs are responsible for the disease not the not the inert matter. A. Lazzaro Spallanzani; B. Louis Pasteur; C. Anton von Leeuwenhock; D. Robert koch	Recall	Remember
3	developed vaccine against rabbis from the brains and spinal cord of rabbit. A. Lazzaro Spallanzani; B. Louis Pasteur; C. Anton von Leeuwenhock; D. Robert koch	Recognize	Remember
4	Living, unstained cells and organisms can be observed best using A. Light microscopy; B. Electron microscopy; C. Phase contrast microscopy; D. Atomic force microscopy	Recognize	Remember
5	The lowest temperature that kills all microorganisms in a liquid suspension in 10 minutes is known as the A. thermal death point; B. D value; C. F value; D. Z value	Recognize	Remember
6	The time required to kill 90% of the microorganisms in a sample at a specific temperature is the A. thermal death point; B. D value; C. F value; D. Z value	Recognize	Remember
7	The time in minutes at a specific temperature needed to kill a population of cells is theA. thermal death point; B. D value; C. F value; D. Z value	Recall	Remember
	is used to prevent infection by killing or inhabiting pathogen growth on animal tissue. A. Antiseptic; B. Germicide; C. Bacteriostatic; D. fungicidal	Recall	Remember
	Microorganisms belonging to the same would be expected to have the most characteristics in common with each other. A. genus; B. species; C. family; D. order	Identify	Remember
	is the arrangement of organisms into groups or taxa. A. phylogeny; B. systematic; C. taxonomy; D. classification	Identify	Remember
	PART – B Short Answer		

	The answer should not exceed 200 words $5 \times 10 = 50$		
	a. Write the scope for microbiology.		
11	b. Explain the refutation of a biogenesis.	Explain	Understand
	 c. Write the contribution of scientists – Edward Jenner, Francesco redi, Joseph Lister and Paul ehrlich. 		
	a. Differentiate between prokaryotic and eukaryotic cell.		
	b. Classify bacteria based on size, shape and arrangement with example.	Differentiate Define	Understand
	a. Explain the various internal cell organelles of bacteria with function of each.		
	b. Write the classification of algae with characteristic features of each division.	Cite Examples	Understand
	c. Differentiate between brightfield and darkfield microscopy.		
14	Explain in detail the nutritional classification of bacteria with example of each?	Illustrate	Apply
	a. Write a short on:		
15	a. Cryophiles; b. Piezophile; c. Auxotrophs; d. Mycoplasma; e. Prions	Describe	skill
	b. Write the classification for bacteriophages		

SEMESTER - I

Course Code	Course Name	L	Т	Р	Credits		
CMB 102	Cell and Molecular Biology	2	2		4		

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Explain the structure and function of different cell organelles, and the mode of replication, transcription, and translation of nucleic acids	Understand
CO 2	Evaluate and apply knowledge of concepts in cellular biology.	Apply
CO 3	Examine the cyclic events of cell division and types of cell division.	Analyze
CO 4	Interpret and explain key experiments in cell and molecular biology	Create
CO 5	Decipher the cell signalling pathways using modern techniques	Skill

Units	Content	Hrs.
Ι	The molecules of life, the architecture of cells; Cell theory, Emergence of modern cell biology, Structure of prokaryotic and eukaryotic cells- cell wall, cell membrane, cell organelles -organization and functions, Cell cycle events - Molecular cell biology - protein structure and function, Hierarchical structure of proteins - folding, modification and degradation, functional design of proteins - membrane proteins - purification, detection and characterization.	12
п	Biosynthesis of macromolecules - Biomembranes and subcellular organization of prokaryotic and eukaryotic cells - cell architecture - Cell signalling – types, Chemical signals and cellular receptors, G Protein- linked receptors, Protein kinase-associated receptors, Growth factors as messengers, Cell signals and Apoptosis, Cytoskeleton: microfilaments- intermediate filaments-microtubules.	12
ш	Prokaryotic and eukaryotic DNA replication, mechanisms of DNA replication, fidelity of replication, enzymes and proteins involved in DNA replication. Types of gene mutations. Suppression, Transposable Genetic Elements, Ames' test. DNA damage and repair mechanisms, DNA repair and aging, DNA repair modulation.	12
IV	Prokaryotic transcription: RNA polymerase, holoenzyme and apoenzyme, sigma factors, details of initiation, elongation, termination. Eukaryotic transcription: Types of RNA polymerases. Promoter of RNA polymerase II. Enhancers. General and inducible transcription factors. Posttranslational modification: mRNA processing, processing, capping, cleavage and polyadenylation, splicing of nuclear pre-mRNA, mRNA stability.	12
V	Gene code: characteristics, deciphering the code. Protein biosynthesis: Prokaryotic and eukaryotic translation, the translational machinery, mechanism of initiation, elongation and termination. Regulation of expression in eukaryotes: Britten-Davidson model. DNA binding and activation domains of transcription factors. Packaging of chromosomes and its relation to transcription regulation. Regulation of translation by 3' and 5' UTR motifs.	12
VI	Gene Regulation & Expression: Operon concept, Repression of the lac operon, Regulation of tryptophan biosynthesis operon by attenuation, catabolite repression instability of bacterial RNA, positive and negative regulation, inducers and co-repressors. Negative regulation - E. coli lac operon; Regulation of the heat-shock regulation by an alternate sigma factor, Two component regulatory systems.	12
	 Tasks and Assignments: Each student is required to submit the following: ✓ A write-up on the underlying mechanism of autophagy and ubiquitin proteasome mediated protein degradation in neurodegenerative diseases models 	
	 Seminar on mitochondrial dysfunction in Alzheimer's disease and Parkinson's disease 	

 ✓ A mini project on gene expression and regulation using E.Coli as model organism ✓ Internal exams 	
References	
Alberts Bruce (2014) Molecular Biology of Cell (6th edition),	
Garland Science	
Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith	
Roberts, Peter Walter.	
Benjamin Lewin. Gene VIII. Pearson Education Inc. NJ, 2004.	
Darnell, Lodish and Baltimore. Molecular Cell Biology, 6th Ed.	
Garland Science	
Russel Peter. Essential Genetics. 2nd Ed, Blackwell Science	
Watson. J. D, Baker. T. A, Bell. S. P, Gann. A, Levine. M, Losick.	
R. Molecular Biology of Gene. (7th edition) Pearson	
Weaver. R. F. Molecular Biology. 5th Ed. McGraw-Hill Education	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	2	2	1	3	2	2
CO5	1	1	1	1	2	3

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	0.04	0.0.0	CO2	GOL	
	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	1	1	2	2	-
Test	4	4	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	C01	CO2	CO3	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part – B (Short Answer - 5 x 4 = 20 marks)	10	10	-	-	-
Part – C (Essay- 3 x 10 = 30 marks)	-	-	10	10	10
Total	12	12	12	12	12

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	supported with specific evidence	11	developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	Includes title, introduction, statement of the main idea with illustration and conclusion.	statement of	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	•	knowledge of facts, terms,	facts, terms,	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	sequences	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

SI. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
1	From the following which statement is incorrect a)Bacteria have a single circular molecule of DNA, and	Recognize	Remember

		1	
	typically only a single replication origin per circular		
	chromosome.		
	b)Archaea have a single circular molecule of DNA and		
	several origins of replication along this circular		
	chromosome.		
	c)Archaea have a single circular molecule of DNA and		
	only one origin of replication along this circular		
	chromosome.		
	d) Eukaryotes often have multiple origins of replication on		
	each linear chromosome that initiate at different times.		
	The role of σ subunit in the prokaryotic RNA polymerase		
	enzyme is		
	a) DNA binding	D 11	D 1
2	b) Chain initiation and recognition	Recall	Remember
	c) Chain initiation and interaction with regulatory protein		
	d) Promotor recognition		
	In this type, mutation turns abnormal phenotype into wild		
	type phenotype		
	a) Transversion mutation		
3	b) Back mutation	Recognize	Remember
	c) Frameshift mutation		
	d) Forward mutation		
	4. Which of these properties do not agree with trp operon		
	attenuator?		
4	a) It brings about the repression of trp operon	Recognize	Remember
	b) It consists of one stem-loop system	-	
	c) It has two codons for tryptophan in sequence		
	d) Ribosome stalls at the attenuator		
	What is the regulation of a lac operon by a repressor known		
5	as?		Remember
	a) Neutral regulation b) Positive regulation		
	c) Mixed regulation d) Negative regulation		
	Genetic Abnormalities in the neurofilament is associated		
	with the following disease		
6	a) Parkinson's disease.	Recognize	Remember
Ŭ	b) Amyotrophic Lateral disease	10008	
	c) Huntington's disease		
	d) Alzheimer's disease		
	Which of the following organelle is involved in xenobiotic		
	detoxification?		
7	a) Golgi	Recall	Remember
	b) Lysosome	Netall	Kennennuer
	c) Smooth Endoplasmic Reticulum (SER)		
	d) Rough Endoplasmic Reticulum (RER)		
	The receptors for a group of signaling molecules known as		
	growth factors are often		
0	a) Ligand-gated ion channels	D. 11	D 1
8	b) G-protein-linked receptors	Recall	Remember
	c) Cyclic AMP		
	d) Receptor tyrosine kinases		
L			i

	Topoisomerases are a major component of a) Transcription Factors b) House Keeping Proteins	Identify	Remember
	c) Histone Proteins d) Non-histone Proteins	5	
10	 Which of the following is not a part of 5' untranslated region? a) Introns in the UTRs b) Secondary structure c) Poly A tail 	Identify	Remember
	d) G4 structures		
	PART – B Essay Answer The answer should not exceed 1000 words 5 x 10 = 50		
11	Detail the following with an examplea) Intragenic mutation suppressionb) bypass suppressionc) transposable elements	Explain	Understand
	a) What are the different steps involved in RNA processing?b) Termination steps in prokaryotic transcription.	Differentiate Define	Understand
	a) Explain the blue white colony screening and how it can help in the identification of recombinant bacteria?	Cite Examples	Understand
14	a) Classify the different classes of sphingolipids with examplesb) Describe the techniques used for the qualitative and quantitative analysis of lipids	Illustrate	Apply
15	 a) Explain the underlying mechanism of the mTOR- dependent and independent mechanism of autophagy. b) Detail the sequential involvement of various ATG complexes in the formation of phagophore and autophagosome 	Describe	Analyse
16	Explain with well-labelled diagrams the Prokaryotic Translation – Chain Initiation and Prokaryotic Translation – Chain Elongation steps.	Explain Discuss	Understand
17	Explain in detail the three levels of chromatin organization with suitable diagrams	Illustrate	Apply

SEMESTER - I

Course Code	Course Name	L	Т	Р	Credits
CMB103	Microbial Biochemistry	2	1		3

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Understand the chemistry of life and major biomolecules' roles in our lives, how they are bonded with our metabolism	Understand
CO 2	To study how the energy flows through living systems and concepts of energy change	Apply

CO 3	Understand the concepts of protein structure determinations and nucleic acid structures.	Analyze
CO 4	Understand the structures and isomers of carbohydrates and metabolism of lipids and their uses	Create
CO 5	To study the metabolic pathways and fermentation	Skill

Chemistry of Life and Special Microbial Molecules: Bonds: ionic bonding, Ion-dipole. Covalent bond, H-bonds, Van der Wall's interaction, Hydrophobic and hydrophilic interactions. Water as a biological solvent and its role in biological processes pH, Henderson- Hasselbalch equation, the concept of buffer, strength of buffer, range of buffer, important biological buffers. Structure of Microbial Molecules: Peptidoglycan, bacteriorhodopsin, biphytanyl chains and lipids in archaeal cell membranes and their significance in adaptation in extreme conditions. 9 Bioenergetics: Laws of thermodynamics, entropy, enthalpy, free energy free energy and equilibrium constant, Gibbs free energy equation, determination of free energy of hydrolytic and biological oxidation reduction reactions, under standard and non-standard conditions, high energy compounds, coupled reactions, determination of feasibility of reactions. ATP and other different groups of high energy phosphate compounds. 9 Proteins & Nucleic acids: Structural features of amino acids & classification, peptide linkage: partial double bond nature, determination of primary structure of pulypeptide, structural classification of proteins, primary, secondary, tertiary, quaternary structures of proteins. Ramchandran plot. Structure of purines, pyrimidines, nucleosides and nucleotides. Physiochemical properties of nucleic acids - Denaturation of nucleic acids. Hyperchromic effect and Tm. Chargaffs rule, Secondary structure of DNA - Watson and Crick model. Secondary structure of tRNA - clover leaf model 9 IV Carbohydrates & Lipids: Monosaccharides, disaccharides, oligosaccharides and polysaccharides, concepts of epimer, isomer. Lipids: Saturated and unsaturated fatty acids, fatty acid oxidation. Biosynthesis of fatty acids, triacylglycerols and phospholipids 9	Units	Content	Hrs.
free energy and equilibrium constant, Gibbs free energy equation, determination of free energy of hydrolytic and biological oxidation reduction reactions, under standard and non-standard conditions, high energy compounds, coupled reactions, determination of feasibility of reactions. ATP and other different groups of high energy phosphate compounds.9Proteins & Nucleic acids: Structural features of amino acids & classification, peptide linkage: partial double bond nature, determination of primary structure of polypeptide, structural classification of proteins, primary, secondary, tertiary, quaternary structures of proteins.9IIIRamchandran plot. Structure of purines, pyrimidines, nucleosides and nucleotides. Hyperchromic effect and Tm. Chargaff's rule, Secondary structure of DNA - Watson and Crick model. Secondary structure of tRNA - clover leaf model9IVCarbohydrates & Lipids: Monosaccharides, disaccharides, oligosaccharides and polysaccharides, concepts of epimer, isomer. Lipids: Saturated and unsaturated fatty acids, fatty acid oxidation. Biosynthesis of fatty acids, triacylglycerols and phospholipids9Metabolic Pathways and Fermentations: Glycolytic pathway, Pentose phosphate pathway (HMP), Entner-Doudroff pathway, Tricarboxylic acid cycle, PDH Multi-enzyme complex Amphibolic pathway, anaplerotic reactions. ETC, generation and maintenance of proton motive force PMF, chemi-osmotic theory, Q cycle, Ubiquinone, Cyt C. Substrate level and oxidative phosphorylation, inhibitors and un-couplers of electron transport chain and function of ATPase (bacterial and mitochondrial), shuttle systems. Fermentation - Lactic acid fermentation, LDH - Alcoholic fermentation ADH - Catabolism of glycogen. Amino acid catabolism- Urea cycle: deamination and transamination reactions. de novo biosynthesis	I	Chemistry of Life and Special Microbial Molecules: Bonds: ionic bonding, Ion-dipole. Covalent bond, H-bonds, Van der Wall's interaction, Hydrophobic and hydrophilic interactions. Water as a biological solvent and its role in biological processes pH, Henderson- Hasselbalch equation, the concept of buffer, strength of buffer, range of buffer, important biological buffers. Structure of Microbial Molecules: Peptidoglycan, bacteriorhodopsin, biphytanyl chains and lipids in archaeal cell membranes and their significance in adaptation in extreme	
IIIclassification, peptide linkage: partial double bond nature, determination of primary structure of polypeptide, structural classification of proteins, primary, secondary, tertiary, quaternary structures of proteins. Ramchandran plot. Structure of purines, pyrimidines, nucleosides and nucleotides. Physiochemical properties of nucleic acids - Denaturation of nucleic acids. Hyperchromic effect and Tm. Chargaff's rule, Secondary structure of DNA - Watson and Crick model. Secondary structure of tRNA - clover leaf model9IVCarbohydrates & Lipids: Monosaccharides, disaccharides, oligosaccharides and polysaccharides, concepts of epimer, isomer. Lipids: Saturated and unsaturated fatty acids, fatty acid oxidation. Biosynthesis of fatty acids, triacylglycerols and phospholipids9VMetabolic Pathways and Fermentations: Glycolytic pathway, Pentose phosphate pathway (HMP), Entner-Doudroff pathway, Tricarboxylic acid cycle, PDH Multi-enzyme complex Amphibolic pathway, anaplerotic reactions. ETC, generation and maintenance of proton motive force PMF, chemi-osmotic theory, Q cycle, Ubiquinone, Cyt C. Substrate level and oxidative phosphorylation, inhibitors and un-couplers of electron transport chain and function of ATPase (bacterial and mitochondrial), shuttle systems. Fermentation - Lactic acid fermentation, LDH - Alcoholic fermentation ADH - Catabolism of glycogen. Amino acid catabolism- Urea cycle: deamination and transamination reactions. de novo biosynthesis of purines and pyrimidines, ribonucleotide9	П	free energy and equilibrium constant, Gibbs free energy equation, determination of free energy of hydrolytic and biological oxidation reduction reactions, under standard and non-standard conditions, high energy compounds, coupled reactions, determination of feasibility of reactions. ATP and other different groups of high energy phosphate compounds.	9
IVCarbohydrates & Lipids: Monosaccharides, disaccharides, oligosaccharides and polysaccharides, concepts of epimer, isomer. Lipids: Saturated and unsaturated fatty acids, fatty acid oxidation. Biosynthesis of fatty acids, triacylglycerols and phospholipids9Metabolic Pathways and Fermentations: Glycolytic pathway, Pentose phosphate pathway (HMP), Entner-Doudroff pathway, Tricarboxylic acid cycle, PDH Multi-enzyme complex Amphibolic pathway, anaplerotic reactions. ETC, generation and maintenance of proton motive force PMF, chemi-osmotic theory, Q cycle, Ubiquinone, Cyt C. Substrate level and oxidative phosphorylation, inhibitors and un-couplers of electron transport chain and function of ATPase (bacterial and mitochondrial), shuttle systems. Fermentation - Lactic acid fermentation, LDH - Alcoholic fermentation ADH - Catabolism of glycogen. Amino acid catabolism- Urea cycle: deamination and transamination reactions. de novo biosynthesis of purines and pyrimidines, ribonucleotide9	III	classification, peptide linkage: partial double bond nature, determination of primary structure of polypeptide, structural classification of proteins, primary, secondary, tertiary, quaternary structures of proteins. Ramchandran plot. Structure of purines, pyrimidines, nucleosides and nucleotides. Physiochemical properties of nucleic acids - Denaturation of nucleic acids. Hyperchromic effect and Tm. Chargaff's rule, Secondary structure of DNA - Watson and Crick model. Secondary structure of	9
 phosphate pathway (HMP), Entner-Doudroff pathway, Tricarboxylic acid cycle, PDH Multi-enzyme complex Amphibolic pathway, anaplerotic reactions. ETC, generation and maintenance of proton motive force PMF, chemi-osmotic theory, Q cycle, Ubiquinone, Cyt C. Substrate level and oxidative phosphorylation, inhibitors and un-couplers of electron transport chain and function of ATPase (bacterial and mitochondrial), shuttle systems. Fermentation - Lactic acid fermentation, LDH - Alcoholic fermentation ADH - Catabolism of glycogen. Amino acid catabolism- Urea cycle: deamination and transamination reactions. de novo biosynthesis of purines and pyrimidines, ribonucleotide 	IV	Carbohydrates & Lipids: Monosaccharides, disaccharides, oligosaccharides and polysaccharides, concepts of epimer, isomer. Lipids: Saturated and unsaturated fatty acids, fatty acid oxidation. Biosynthesis of fatty acids, triacylglycerols and phospholipids	9
reductase and its role in nucleic acid metabolism	V	phosphate pathway (HMP), Entner-Doudroff pathway, Tricarboxylic acid cycle, PDH Multi-enzyme complex Amphibolic pathway, anaplerotic reactions. ETC, generation and maintenance of proton motive force PMF, chemi-osmotic theory, Q cycle, Ubiquinone, Cyt C. Substrate level and oxidative phosphorylation, inhibitors and un-couplers of electron transport chain and function of ATPase (bacterial and mitochondrial), shuttle systems. Fermentation - Lactic acid fermentation, LDH - Alcoholic fermentation ADH - Catabolism of glycogen. Amino acid catabolism- Urea cycle: deamination and transamination reactions.	9

1.	Each student is required to submit the following:	
2.	Demonstrate the different chemical bonding among bio, micro	
	and macro molecules of ife.	
3.	Determine and analyze the protein structure based on their protein sequences.	
4.	Mechanism of energy transfer within the cells, and demonstrate	
	the prokaryotic and eukaryotic energy production pathways.	
Refere	ences:	
1. D.L	. Nelson, Michael M. Cox Lehninger's Principle of Biochemistry.	
	6th ed. W. H. Freeman, 2012	
2. J.M.	. Willey, Lansing M. Prescott Microbiology. 7th Ed. McGraw-Hill	
	Higher Education, 2008	
3. Jer	emy M. Berg, John L. Tymoczko, Gregory J. Gatto, Jr., Lubert	
	Stryer Biochemistry. 8th Ed. W. H. Freeman, 2015.	
4. Wh	ite David. Physiology and Biochemistry of Prokaryotes. 3rd Ed.	
	Oxford University Press, New York, 2007	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	1	1	2
CO2	3	3	3	2	2	2
CO3	3	3	3	2	2	2
CO4	2	2	1	2	2	2
CO5	2	2	3	1	1	2

d. Evaluation Scheme

	C01	CO2	CO3	CO4	C05	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	-	-	2	2	-
Test	5	5	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part – B	10	10	10	10	10
(Essay - 10 x 5 = 50 marks) Total	10	10	12	10	10

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	and supported	developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	statement of the	statement of	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	knowledge of facts, terms,	knowledge of facts, terms,	Considerable knowledge of facts, terms, and concepts	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	Well Communicate d with logical sequences, examples, and references	d with		No coherent communicatio n	Not Attende d	CO3, CO4

SI. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
1	The most common type of protein structure is a. Beta sheets b) alpha helix c) beta turns d) all the above	Recognize	Remember

2	The common point of rotation in the peptide bond isa) Beta carbon c) C-N bondb) C-C bond d) alpha carbon	Recall	Remember
3	The molecular weight of T-RNA is a. 25-30 KD b. 30-35 KD c. 20-25 KD d. 15-20 KD	Recognize	Remember
4	From the following which is not a structural protein a. Keratin b. tubulin c. myosin d. actin	Recognize	Remember
5	 A refers to one of three possible ways of reading a nucleotide sequence. a. Open reading frame b. reading frame c. codons d. protein-coding sequences 	Recognize	Remember
6	Helix breaker is a. Cytosine b. alanine c. proline d. glycine	Recognize	Remember
7	From the following which is not a ketose a. Xylulose b. ribulose c. Dihydroxyacetone d. arabinose	Recall	Remember
8	Photosynthesis is an reaction a. Exergonic b. endergonic c. equilibrium reaction d. none of the above	Recall	Remember
9	 ATP is consisted of following type of bonds a. Acyl phosphatic bond b. thioester bond c. Phospho anhydride bond d. enol phosphatic bond 	Identify	Remember
	 The following enzyme is not involved in pyruvate dehydrogenase complex a. pyruvate dehydrogenase b. dihydrolipoyl reductase c. dihydrolipoyl transacetylase d. dihydrolipoyl dehydrogenase 	Identify	Remember
	PART – B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50		
11	How do you asses the spontaneity of a reaction in comparison with Gibbs free energy, enthalpy and entropy?	Describe	Analyse
	What are stereoisomers, enantiomers, epimers and enantiomers? Give suitable examples.	Explain Discuss	Understand
10	What are different high energy compounds involved in metabolic pathways?	Assess	Skill
14	a. What is anaerobic cellular respiration and what are the products formed out of that?b. Summarise the amount of ATP production from aerobic respiration processes.	Describe	Analyse
15	What are different forms of secondary structures are possible in a protein molecule and their use?	Explain Discuss	Understand

16 Detail the T-RNA structure and function.	Assess	Skill
---	--------	-------

SEMESTER - I

Course	Course Name	L	Т	Р	Credits		
Code							
CMB104	Immunobiology	3	0	0	3		

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Understand the basics of immunology	Understand
CO 2	Explain the antigen recognition by the B-cell and T-cell receptors and antibody structure	Apply
CO 3	Explain the immune signaling and apoptosis	Analyze
CO 4	Learn adaptive immune responses	Create
CO 5	Understand the role of immune system in human health and diseases	Apply

Units	Content	Hrs.
Ι	Introduction to Immunobiology and Innate Immunity: Principles of innate and adaptive immunity, Effector mechanisms – The first-lines of defense, complement system, Pattern recognition, induced innate responses to infection.	16
П	Recognition of Antigen: Antigen recognition by B-cell and T-cell receptors, Structure of antibody molecule, the interaction of antibody molecule with specific antigen, Antigen recognition by T cells, Generation of lymphocyte antigen receptors, primary Ig rearrangement, T-cell receptor gene rearrangement, structural variation in Ig constant regions, secondary diversification of antibody repertoire, antigen presentation to T lymphocytes, generation of T-cell receptor ligands, the MHC and its functions.	16
ш	Development of Mature Lymphocyte Receptor Repertoires: signaling through immune system receptors, general principles of signal transduction and propagation, antigen receptor signaling and lymphocyte activation, Other receptors and signaling pathways: cytokine and cytokine receptors, apoptosis receptors, Development of B lymphocytes and T lymphocytes, Positive and negative selection, Survival and maturation of lymphocytes in lymphoid tissues.	16
IV	Adaptive Immune Response: T cell-mediated immunity, entry of naïve T cells and APCs into peripheral lymphoid organs, priming of naïve T cells by DCs, General properties of effector T cells and their cytokines, T cell-mediated cytotoxicity, macrophage activation by Th1 cells, Th2 cells, Th17 cells & Tregs. Humoral Immune Response: B cell activation by helper T cells, Distribution and functions of Ig classes, Destruction of antibody-coated pathogens via Fc receptors, Dynamics of adaptive immunity, The mucosal immune system and organization, Mucosal responses to infection and regulation.	16

V	Immune System in Health and Disease: Failures of host defense mechanisms: Evasion and subversion of immune defenses, Immunodeficiency diseases, Allergy and other hypersensitivity disorders and mechanisms, Autoimmunity and transplantation: The making and breaking of selftolerance, autoimmune diseases and mechanisms, genetic and environmental basis of autoimmunity, responses to alloantigens, transplant rejection, manipulation of immune responses, treatment of adverse responses, anti-tumor responses and vaccination. Immunodiagnostics: Serological reactions: Immunoprecipitation, flocculation, agglutination, ELISA, RIA, complement fixation, western blotting, flow cytometry, cytokine arrays.	16		
	Tasks and Assignments:			
	Each student is required to submit the following:			
	✓ Assignments			
	✓ Research seminars			
	References:			
	1. Janeway Immunobiology. 9th Edition. Publisher-Garland Science, 2016			
	2. Abul K Abbas, Andrew H Lichtman & Shiv Pillai, Cellular &			
	Molecular Immunology, 8th Edition 2014, Elsevier			
	3. Roitt's Essential Immunology, 13th Edition, Peter J. Delves, Seamus J.			
	Martin, Dennis R. Burton, Ivan M. Roitt 2016, Wiley-Blackwell.			
	4. William E. Paul. Fundamental Immunology. 7th Edition. Lippincott Williams and Wilkins, 2012.			

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	2	4	3	3	2	3
CO3	1	3	3	3	3	4
CO4	2	3	1	3	2	2
CO5	3	3	2	1	3	2

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	-	-	2	2	-
Test	5	5	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part –B (Essay- 5 x 10 = 50 marks)	10	10	10	10	10
Total	12	12	12	12	12

f. Mapping Course Outcome with External Assessment (60 Marks)

g. Rubric for Assignments

<u>g. R</u>	. Rubric for Assignments								
SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs		
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	and supported	developed or		Not attended	CO1, CO2, CO5		
2	Organiza -tion 50%	statement of the	Includes title, introduction, statement of main idea and conclusion.	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5		

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	1	knowledge of facts, terms,	facts, terms,	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	d with logical	Communicate	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

SI. No.	Videl Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
1	 can bind to DNA. a. DAPI b. CDDO c. Metotrexate d. DMSO 	Recognize	Remember
2	 Protein can be used as an internal control in blotting experiments. a. Bcl-2 b. Nrf2 c. Bax d. B-actin 	Recall	Remember
3	 Bid is a substrate of a. Caspase 2 b. Caspase 3 c. Caspase 8 d. Caspase 	Recognize	Remember
4	 The marginal zone is a unique compartment that separates the lymphoid white pulp from the surrounding red pulp. a. Spleenic b. Tonsil c. Peyer's patch d. Appendix 	Recognize	Remember
5	 The TLR9 recognises: a. CpG motifs. b. Gram +ve peptidoglycan. c. Mycobacterial lipoarabinomannan. d. dsRNA. 	Recognize	Remember
6	 Which of the following pairs is mismatched? a. Plasma cell: mediation of phagocytosis and killing of microorganisms in the plasma b. Dendritic cell: activation of adaptive immune responses c. Neutrophil: formation of pus d. Regulatory T cell: inhibition of T-cell activity. 	Recognize	Remember
7	 Peptides produced by processing of cytosolic proteins largely: a. Enter the endoplasmic reticulum by diffusion. b. Are presented at the cell surface with MHC class II to CD4 T-helpers. c. Are presented at the cell surface with MHC class II to CD8 cytotoxic T-cells. d. Are presented at the cell surface with MHC class I to CD8 cytotoxic T-cells. 	Recall	Remember

8	 The initial complement component that is bound by complement-fixing antibodies is: a. C1q b. C1s c. C3b d. C5a 	Recall	Remember
9	 Homing of effector T cells to inflamed tissue is facilitated by the upregulation of on the surface of the effector T cell. a. VLA-4 b. L-selectin c. CD28 d. VCAM-1 	Identify	Remember
10	 Antigen recognition by T cells in the absence of co- stimulation results in a. upregulation of B7 b. expression of the high-affinity IL-2 receptor c. T-cell anergy d. T-cell apoptosis 	Identify	Remember
	PART – B Essay Answer		
TI	The answer only 5 questions and answer should not exceed 400 words $5 \ge 10 = 50$		
11	Discuss the following. a.Cytokine array b.Tissue microarray	Describe	Analyse
	How will you find out the binding element of the transcription factor NF κ B by an experimental method? Explain with a suitable diagram.	Explain Discuss	Understand
13	Explain the receptor-mediated apoptotic pathways in detail.	Assess	Skill
14	Describe the macromolecular structure of the MHC ligand that presents microbial peptides to naïve CD8+ and CD4+ T cells. Discuss the cellular mechanisms underlying the processing and presentation of MHC-I and II to antigens in endosomal and ER compartments.		Understand
15	Write short notes on a. Immunoproteosome b. Idotypic antibody c. MHC restriction d. Treg cells	Explain Discuss	Understand
16	What is hybridoma technology? Discuss the principles and procedures involved in the mass generation of monoclonal antibodies in R&D labs and their clinico-diagnostic applications	Describe	Analyse
17	Describe the mechanisms involved in the expansion of different subsets of T helper cell phenotypes following activation by antigen-presenting cells. Discuss the		Analyse

significance of Th1, Th2, T	h17 and Tregs in cell-mediated	d
immune responses.		

SEMESTER - I

Course Code	Course Name	L	Т	Р	Credits			
CMB105	Microbial Physiology	2	1	0	3			

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Explain the nutritional patterns and their classifications in various microbes.	Understand
CO 2	Explain various types of metabolic processes and their diversity in microbes.	Apply
CO 3	Deals with photosynthesis and inorganic metabolic processes present in microorganisms.	Analyze
CO 4	Explains the anaerobic respiration and associated processes happening in various microbes.	Create
CO 5	Deals with various types of metabolic regulations along with their regulatory pathways present in microbes.	Skill

Units	Content	Hrs.
Ι	Microbial nutrition Microbial nutrient requirements, macro-nutrients, micro-elements, growth factors, sources of nutrients, nutritional classification of bacteria: phototroph, chemotroph, autotroph, heterotroph, photoautotroph, photoheterotroph, chemoautotroph, chemoheterotroph – nutritional patterns of pathogens – saprophytes – auxotroph.	12
п	Metabolic Diversity Heterotrophic metabolism on substrates other than glucose. Hydrolysis of polymers - Starch hydrolysis, Cellulose hydrolysis, Oxidation of aliphatic hydrocarbons - Amino acid utilization: Oxidative deamination, Transamination - Oxidation of aromatic compounds -Methanotrophy; Characteristics of methanotrophs, Dissimilation of methane by methanotrophs -Carbon assimilation by methylotrophs - Energy efficiency in C1 metabolism	12
ш	 Photosynthesis & Inorganic Metabolism Characteristics and Metabolism of Autotrophs, Photosynthetic Bacteria and Cyanobacteria Autotrophic CO2 Fixation and Mechanisms of Photosynthesis, Photosystem I and II in cyanobacteria – Methanogenesis Nitrification: Nitrifying Bacteria, Ammonia oxidation, Nitrite oxidation, anaerobic nitrification - Sulfur bacteria and the oxidation of sulfur compounds 	12
IV	Anaerobic Respiration Denitrification: Biochemistry of denitrification, - Regulation of denitrification - Metal reduction: Fe (III) and Mn (IV) reduction, Microbial reduction of other metals, Metal reduction and the environment	12

	- Sulfidogenesis: Biochemistry of sulfidogenesis, Reduction of sulfate and sulfur, - sulphur reducing bacteria.				
V	Metabolic RegulationRegulation through modulation of enzyme activity: fine regulation,Feedback inhibition Enzyme activity modulation through structural				
		ll (Any two)			
	S.No.	Apparatus and Tools	Concept		
V	1	-	Intelligence		
	2	-	Personality		
	3	-	Self-Concept		
	be assign Referen 1. Alcon Jones an 2. Gerard Microbid 3. David Prokaryd 4. Perry, Sinauer 5. Schae		ogy. 9th Edition, setts. Case. n, 2013 emistry of obial Life. 2nd edition achusetts.		

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	2	2	1	3	2	2
CO5	1	1	1	1	2	3

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2

Seminar	-	-	2	2	-
Test	5	5	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part – B (Short Answer - $5 \ge 4 = 20$ marks)	10	10	_	-	-
Part – C (Essay- $3 \times 10 = 30$ marks)	-	-	10	10	10
Total	12	12	12	12	12

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	well developed, supported with specific evidence & facts and examples	11	developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	statement of the	Includes title, introduction, statement of main idea and conclusion.	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	knowledge of facts, terms,	knowledge of facts, terms,		knowledge of facts, terms,	Not Attende d	CO3, CO4

2	Presentation 50%	d with logical sequences.	Communicate d with sequences	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4
---	---------------------	---------------------------	------------------------------------	-------------	----------------------------------	---------------------	-------------

Sl. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
	 Assume you inoculated 100 facultative anaerobic cells onto nutrient agar and incubated the plate aerobically. You then inoculated 100 cells of the same species onto nutrient agar and incubated the second plate anaerobically. After incubation for 24 hours, you should have? a) more colonies on the aerobic plate. b) more colonies on the anaerobic plate. c) the same number of colonies on both plates. d) nothing will grow in both the plates 	Recognize	Remember
2	 Which one of the following temperatures would most likely kill a mesophile? a) -20°C b) 12°C c) 20°C d) 47°C 	Recall	Remember
	 An organism that has peroxidase and superoxide dismutase but lacks catalase is most likely an a) aerobe. b) aerotolerant anaerobe. c) obligate anaerobe d) facultative anaerobes 	Recognize	Remember
4	 A soup container was forgotten in the refrigerator and shows contamination. The contaminants are probably which of the following? a) thermophiles b) acidophiles c) mesophiles d) psychrophiles 	Recognize	Remember
5	 Growth of bacteria or microorganisms refer to a) an increase in the size of an individual organism b) an increase in the mass of an individual organism c) any changes in the population 	Recognize	Remember

	d) an increase in number of cells		
	Which of the following factors are responsible for the		
	stability of thermophiles at high temperatures?		
	a) Increased leakage of cell components		
6	b) Presence of large no. of polar amino acids and alpha-	р [.]	D 1
6	helix protein	Recognize	Remember
	c) Presence of thermo ribosomes		
	d) Presence of Inositol diphosphate and thermal stability		
	of ribosomes		
	The Reactive Oxygen Species(ROS) produced by some		
	bacteria are degraded by which of the following enzymes?		
7	a) Peroxidase	Recall	Remember
,	b) Lyase	Reedin	Remember
	c) Catalase		
	d) Superoxide dismutase, Catalase and Peroxidase		
	Which of the following acts as a chemical reductant in		
	bacterial photosynthesis?		
8	a) Oxygenb) Water	Recall	Remember
	c) Hydrogen sulphide		
	d) Ammonia		
	Bacteria that grow in mine drainage at pH 1–2 are probably		
	which of the following?		
0	a) Alkaliphiles		D 1
9	b) Acidophiles	Identify	Remember
	c) Neutrophiles		
	d) Obligate anaerobes		
	Which of the following environments would harbor		
	psychrophiles?		
	a) Mountain lake with a water temperature of 12 °C		
10	b) Contaminated plates left in a 35 °C incubator	Identify	Remember
	c) Yogurt cultured at room temperature of 25 °C		
	d) Salt pond in the desert with a daytime temperature of		
	34 °C		
	PART – B ESSAY Answer		
	The answer should not exceed 200 words $10x 5 = 50$		
	Define microbial nutrition and describe in detail the different		
	types of transport systems used by microbial cells to transport	Describe	Analyse
	nutrients? Describe the microbial metabolism of starch hydrolysis?		
	write the step involved in isolating the starch hydrolysing	Explain	Understand
	hacteria in the lab?	Discuss	Charlotana
1.0	What are methanotrophs? Describe how Carbon assimilation		G1 '11
13	is performed by methylotrophs?	Assess	Skill
1/	Describe in detail the metabolic process of lactose and	Describe	Analyse
14	maltose utilization by the <i>E. coli</i> cells?	Describe	Anaryse

15	Describe the mechanism of uptake and oxidation of aliphatic hydrocarbons by microorganism?	Explain Discuss	Understand
16	Aspartate transcarbamoylase (ATCase) is the first step in the pyrimidine synthesis. Explain how rising ATP and CTP concentrations have antagonistic effects on the allosteric regulation of this enzyme.	Assess	Skill

SEMESTER - II

Course Code	Course Name	L	Т	Р	Credits
PMB 101	Practical Microbiology I		0	2	2

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Principles and methods of sterilization, culturing and staining of microbes	Understand
CO 2	Evaluate and apply knowledge of modern techniques in the identification of microbes	Apply
CO 3	Examine the cell cycle in various squash preparations to identify mitotic and meiotic stages	Analyze
CO 4	Classifications of bacterial and fungal staining procedures	Create
CO 5	Isolation and purification of microbes and maintaining the pure culture in lyophilized condition	Skill

Units	Content	Hrs.
I	Principles and methods of sterilization, Direct microscopic observations of bacterial shape – cocci, rods, chains, fungal spores, mycelium, yeast budding, Preparation of Media: Nutrient broth, Nutrient agar, plates, slants, soft agar, Pure culture technique: Streak plate, spread plate and pour plate methods, Measurement of size of microbes – micrometry, Bacterial motility by hanging drop method, Enumeration of bacterial/yeast cells-viable count (plate count) Total count (Haemocytometer), Isolation and purification of cyanobacteria, actinomycetes, fungi and protozoans, Staining methods: Simple, Negative, acid fast, Gram staining, spore, Capsule, Metachromatic granular staining, Lactophenol cotton blue staining and flagellar staining - Fungal slide culture.	20
П	Preparation of permanent slides, Observation of prokaryotic and eukaryotic cells and cell types, Study of cell organelles adopting preparations/models, Squash preparation of giant chromosome of salivary gland of chironomous larva, Squash preparation of onion root tip, testis and anther lobes, Preparation of buccal smear, Red blood cell as osmometer, Subcellular fractionation and biochemical/enzymological analysis, Metaphase chromosome preparations and preliminary banding techniques	20
	Tasks :	

Each student will be evaluated by the following:		
 ✓ Lab performance 20% ✓ Lab report 30% 		
✓ Examination 50%		

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	2	2	1	3	2	2
CO5	1	1	1	1	2	3

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	1	1	2	2	-
Test	4	4	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	Ć03	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part – B (Essay - 5 x 10 = 50 marks)	10	10	10	10	10
Total	12	12	12	12	12

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	supported with specific evidence & facts and	detailed, Developed and supported			Not attended	CO1, CO2, CO5

			evidence and facts mostly specific.				
2	Organiza -tion 50%	statement of the main idea with	statement of main idea and	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

Sl. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understanding 50%	of facts,	knowledge of facts, terms,	Considerable knowledge of facts, terms, and concepts	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	Well Communica ted with logical sequences, examples, and references	Communicate	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

i. Model Question Paper

SI. No.	Model Questions	Specification	Level
	PART – B Essay Answer The answer should not exceed 1000 words 2 x 25 = 50		
1	Identify the slides containing belowa) Smear preparationb) Squash preparationc) Permanent fungal specimen	Identify	Describe
2	Project viva voce	Explain	Understand

SEMESTER - I

Course Code	Course Name	L	Т	Р	Credits
PMB 102	Practical Microbiology II			2	2

	Course Outcome	Level
CO 1	Make standard buffers and determine pH of a solution	skills
CO 2	Perform qualitative and quantitative tests for carbohydrates, proteins, and estimation of RNA/DNA	skills
CO 3	Learn the quantification of blood cells, ELISA, western blotting techniques	analyze
CO 4	observe animal handling	analyze
CO 5	Observe different injection methods in animal	skill

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

Units	Content	Hrs.						
I	Preparation of standard buffers and determination of pH of a solution, Qualitative tests for Carbohydrates- Tests for sugars: Fructose, lactose, maltose, glucose and starch, Qualitative tests for amino acids, Quantitative estimation of glucose by DNS method, Quantitative estimation of protein by Biuret method, Quantitative estimation of protein by Lowry's method, Determination of Iodine value, Estimation of carbohydrates by anthrone method, Estimation of amino acids by ninhydrin method, Estimation of DNA/RNA.							
п	Virtual demonstration (as per UGC guidelines) of handling of laboratory nimals, Different ways of injecting antigens to mouse (IP, SC, IV, retro- rbital), Isolation of organs and tissues of immune system from mouse, Quantification of blood cells using haemocytometer, extraction of human BMCs by Ficoll-Hypaque overlay method, flow cytometry and data nalysis, WIDAL test for enteric fever, Immunoelectrophoresis, ELISA, Vestern blotting, VDRL test for syphilis							
	Tasks and Assignments:							
	Each student is required to submit the following:							
	 ✓ Participate in the subject-oriented quiz. ✓ Visit industry to learn techniques and advancements. ✓ Maintaining record note books 							
	References: 1. Practical Handbook of Microbiology, edited by Emanuel Goldman (Editor), Lorrence H Green (Editor).							
	 Practical Immunology, 4th Edition, edited by Frank C. Hay, Olwyn M. R. Westwood. By Carlos F. Barbas, Dennis R. Burton, Jamie K. Scott, Gregg J. Silverman 							

c. Mapping of Program Outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	1	1
CO2	3	2	2	2	2
CO3	1	3	2	2	1

CO4	2	2	1	2	2
CO5	1	2	2	1	1

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	10	10	10	10	10	50
External	10	10	10	10	10	50
Total	17	17	15	17	17	100

e. Mapping Course Outcome with Internal Assessment (50 Marks)

	CO1	CO2	CO3	CO4	CO5
Practical	3	3	3	3	3
Seminar	-	-			-
Test	4	4	4	4	4
Attendance	3	3	3	3	3
Total	10	10	10	10	10

f. Mapping Course Outcome with External Assessment (50 Marks)

Category	CO1	CO2	CO3	CO4	CO5	CO6
Part – A	2	2	2	2	2	2
(Objective - 10 x 1 = 10 marks)	2	2	2	2	2	
Part – B	8	8	8	8	8	8
(Essay - 10 x 5 = 50 marks)	0	0	0	0	0	
Total	10	10	10	10	10	10

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	11	particularly developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	statement of the	statement of	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

SI. No ·	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	knowledge of	knowledge of facts, terms,	facts, terms,	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	sequences	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

i. Model Question Paper

SI. No.	Model Questions	Specification	Level
	Part – A: Demonstration 20 x 2 = 40		
	Estimate the amount of protein in the given sample by Bradford Assay.	Recognize	Remember
2	Estimate the glucose in the given sample by DNS method	Recognize	Remember
	PART – B Spotter The answer should not exceed 200 words 5 x 2 = 10		
11	List the advantages of using Zebrafish as a model organism.	Recognize	Analyze
12	Identify the image and elaborate it.	Recognize	Analyze

SEMESTER - II

Course Code	Course Name	L	Т	Р	Credits
CMB201	Bacteriology and Mycology	2	2		4

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	To offer comprehensive knowledge on bacterial systematics and bacterial ultrastructure	Understand
CO 2	To get in depth knowledge in Microbial growth parameters and conditions	Understand
CO 3	To get in-depth knowledge in bacterial genetics	Apply
CO 4	To obtain overall understanding about the fungal taxonomy and principles of classification	Understand
CO 5	In depth knowledge about fungal genetics and their applications	Analyse

CO	Significance and	applications of research on fungi	Skill
----	------------------	-----------------------------------	-------

b. Sylla Units	Content	Hrs.
I	Bacterial classification based on Bergey's Manual of Determinative Bacteriology – Gram negative, Gram positive, the mycoplasmas and archea; Classification based on serology, biochemistry, 16s rRNA, G+C content and molecular tools. Bacterial ultrastructure and organelles. Staining of bacteria and organelles.	10
П	Microbial Growth: Culture conditions - bacterial culture media- chemically defined, complex, differential and selective media - for aerobes and anaerobes; Bacterial growth curve; Effect of physical and chemical factors on growth. Measuring bacterial growth- Spectrophotometric method, microscopic counting, serial dilution and viable cell count. Bacterial reproduction. Fungal nutrition and metabolism – nutritional requirement, saprophytic, parasitic, obligatory and facultative. Culture media and natural substrates of fungi. Biotrophic semibiotrophic and necrotrophic mode of growth. Fungal-microbe interaction, fungal – plant interactions – symbiotic and antagonistic interactions.	10
III	Bacterial Genetics: Organization of genetic material in bacteria, Gene transfer mechanisms: Conjugation, Transformation and Transduction. Recombination in bacteria. Natural transformation systems-Streptococcus pneumoniae and Haemophilus influenzae. Transfection and forced competence. Bacterial Conjugation- Properties of the F plasmid, F+ x F - mating, F' x F conjugation. Transduction- Generalized and specialized transduction, Drug resistance in bacteria.	10
IV	Fungal taxonomy – Criteria. Traditional, chemo and molecular taxonomy. Fungal ecology, distribution of yeasts and fungi. General characteristics, structure and organization of fungi – Fungal body and cell, Colony, communication and signalling. Cell differentiation and reproduction. Fungal reproduction - Vegetative, asexual and sexual. Adaptive & Developmental Changes: Myxobacterial developmental cycle: Life Cycle of myxobacteria, Aggregation and fruiting body formation, Intercellular signalling in myxobacteria Fungal-microbe interaction, fungal – plant interactions – symbiotic and antagonistic interactions. Endophytic fungi -symbiotic and opportunistic associations, co evolution and loss of reproductive structures, Secondary metabolite production, toxins – importance, toxicity to herbivores and insects.	10
V	Fungal Genetics: Features and consequences of heterothallism, homothallism, mating types, Vegetative incompatibility, Polyploidy and aneuploidy. Neurospora- Tetrad analysis and linkage detection - 2 point and 3-point crosses – Induction of Mutations - Mitotic recombination in Neurospora – Transposable elements - Gene conversion. Yeast plasmids, Mating type genetics of yeast.	10

VI	Significance of Fungi: Agricultural production and plant productivity, toxigenic fungi and mycotoxins, plant pathogens, fungi in biocontrol; Fungi in biotechnology and industrial production; Fungal metabolites and economic significance – mycotoxins, medicinal uses, food additives, alcohol, vinegar, enzymes, biopesticides. Edible fungi – mushrooms, Mushroom poisoning. Beneficial contribution of mycorrhizal associations – endo and ecto mycorrhiza.	10
	Tasks and Assignments:	
	Each student is required to submit the following:	
	✓ Each student should discuss one publication in the field of microbial classification and identification	
	✓ Each student should take an assignment to write about a component of bacterial ultrastructure.	
	✓ Participate in the subject-oriented quiz.	
	✓ Prepare a protocols for Fungal isolation, classification and identification	
	✓ References:	
	Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton – Microbiology-10th	
	edition; publisher: Mcgraw-Hill College 2016.	
	2. Jacquelyn G. Black, Laura J. Black- Microbiology: Principles and Explorations, 9th edition;	
	 Publisher: Wiley 2014 3. Gerard J. Tortora, Berdell R. Funke, Christine L. Case- Microbiology: An Introduction -12th 	
	4. edition: publisher: Pearson 2015.	
	5. Mehrotra RS and KR Aneja. An Introduction to Mycology, New Age Publishers	
	 Steven L. Stephenson (2010), The Kingdom Fungi: The Biology of Mushrooms, molds and 	
	lichens.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	1	1	2
CO2	3	3	3	3	2	3
CO3	3	3	3	3	2	3
CO4	2	2	1	3	2	3
CO5	2	2	3	1	1	2

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	CO6	Total
Internal	7	7	5	7	7	7	40
External	10	10	10	10	10	10	60
Total	17	17	15	17	17	17	100

	C01	CO2	CO3	CO4	C05	CO6
Assignments	2	2	-	-	2	2
Seminar	-	-	2	2	-	
Test	4	4	4	4	4	2
Attendance	1	1	1	1	1	1
Total	7	7	7	7	7	5

e. Mapping Course Outcome with Internal Assessment (40 Marks)

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5	CO6
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2	2
Part – B (Essay - 10 x 5 = 50 marks)	8	8	8	8	8	8
Total	10	10	10	10	10	10

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	11	particularly developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	statement of the	introduction,	tools	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

SI. No ·		100%	75%	50%	25%	0%	Relatio n to COs	
----------------	--	------	-----	-----	-----	----	------------------------	--

1	Understandin g	facts, terms,	knowledge of facts, terms,	Considerable knowledge of facts, terms, and concepts	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	Presentation 50%	Well Communicate d with logical sequences, examples, and references	d with		No coherent communicatio n	Not Attende d	CO3, CO4

SI. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
1	 Which mycotoxin is useful to treat post-partum complication a. Aflatoxin b. Ergotamine c. Ochratoxin d. Fumonisins 	Recognize	Remember
2	 Which of the following statements is true? a. A dikaryotic ascus that forms in the ascocarp underg karyogamy, meiosis, and mitosis to form eight ascospores. b. A diploid ascus that forms in the ascocarp underg karyogamy, meiosis, and mitosis to form eight ascospore. c. A haploid zygote that forms in the ascocarp underg karyogamy, meiosis, and mitosis to form eight ascospore. d. A dikaryotic ascus that forms in the ascocarp underg plasmogamy, meiosis, and mitosis to form eight ascospore. 	Recall	Remember
3	The so-called simple septa of some fungi have a central pore nearby associated organelles called a. Woronin bodies b. Dolipore c. Crozier d. Sterigma	Recognize	Remember
4	 Neurospora crassa was used by Beadle and Tatum a. to produce citric acid and thus break the Italian lemon monopoly b. because it was easy to produce both asexual and sexua spores for experiments c. to identify mutants that were unable to synthesize sing nutritional compounds d. to develop the one gene-one enzyme hypothesis 	Recognize	Remember

	The fertile region of ascocarp is referred to as;		
	a. Trama		
5	b. Hymenium	Recognize	Remember
	c. Hypothecium		
	d. Stipe		
	F factor has several of the following elements that assist in		
	plasmid integration.		
	a. Episomes	D ·	D 1
6	b. IS elements	Recognize	Remember
	c. Tra A		
	d. Col factor		
	What is a concatemer?		
	a) A process of unidirectional nucleic acid replication		
	b) The site where homologous sections of DNA are		
7	associated	Recall	Remember
	c) A cell with temporarily diploid nature of genome		
	d) A long continuous DNA molecule that contains multi		
	copies of same DNA sequence		
	One of the following is not a cause for increase in drug		
	resistance		
0	a. Using narrow spectrum antibiotics	D 11	Damantan
8	b. Self-administration of drugs	Recall	Remember
	c. Wrong diagnosis		
	d. Profit oriented pharma companies		
	Which of the following statements is false?		
	a) Plasmids have their own origin of replication		
	b) An "Exogenote" can be defined as a piece of recipient		
0	cell's DNA	L1	D 1
9	c) Some of the R plasmids can be transmitted between	Identify	Remember
	different species		
	d) The chromosome exchanges during Meiosis result fro		
	crossing over		
	Which of the following proteins helps form Holliday junction		
	and promotes branch migration?		
10	A. Ruv ABC	Idantify	Remember
10	B. Rec G	Identify	Kemember
	C. Rec A		
	D. Rec BCD		
	PART – B ESSAY Answer		
	The answer should not exceed 200 words $10x 5 = 50$		
	Describe the general characteristic, classification, and life cy		
11	of Basidiomycete fungi and elaborate on the medicinal proper	Describe	Analyse
	of two mushrooms.		2
	Explain the life cycle of Neurospora spp in terms of homo, het		
	and pseudothallism? ascospores. How does the term tetrad re		
	to the terms ascus and octad? How the products of mei	Explain	** 4
		Discuss	Understand
	segregation can be identified by tetrad analysis? (Show it o	- 10 - 400	
	diagram of the life cycle.)		
L			

13	Describe the procedures for isolating endophytic fungi from plant tissue, and explain the morphological and taxonom methods adopted to classify and identify them. How to derive answer for a hypothesis that endophytic fungi switch t lifestyle to saprobe using Phomopisis and Collectotrich species.	Assess	Skill
	What are the different phage-mediated vectors used in molecular biology? Explain with examples	Describe	Analyse
	What is transduction? Explain in detail the two forms of transduction events that are observed in bacteria	Explain Discuss	Understand
16	 Write short notes on the following? A. Competence in bacterial cells B. Natural transformation system - <i>Streptococ pneumoniae</i> C. Mode of action of anti-bacterial drugs 	Assess	Skill
17	Explain in detail the Lederberg and Tatum experiment Bernard Davis U tube experiment.	Asses	Analyse

Course Code	Course Name	L	Т	Р	Credits
CMB 202	Virology	3	0	0	3

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Provides an insight into the ultra-structure, replication and molecular biology of viruses	Understand
CO 2	Evaluate and compare methods used for laboratory diagnosis of viral infections	Apply
CO 3	Comprehensibly analyse and report outcomes of virological research	Analyze
CO 4	Demonstrate knowledge of the emerging and reemerging of selected RNA and DNA viruses	Create
CO 5	Formulate vaccine strategies and decipher the mechanisms of antiviral drugs	Skill

Units	Content	Hrs.
Ι	Definitive properties of viruses: Morphology, Ultra structure, Chemical composition - proteins, nucleic acids, and enzymes. Classification and nomenclature; Group I, Group II, Group III, Group IV, Group V, Group VI, Group VII. Sub-viral particles: Discovery, Structure, Classification, replication and diseases caused	10

II	General aspects of plant and animal viral diseases. Introduction to viral vaccines, preparation of vaccines, new vaccine technology; antiviral drugs, antiviral gene therapy, antiviral libraries, antiretrovirals—mechanism of action and drug resistance. Modern approaches for virus control: Antisense RNA, siRNA, ribozymes, in silico approaches for drug designing. T-phages, Cyanophages, Baculovirus. Mechanism of host cell damage- Host cell 'shut off', apoptosis, necrosis, alteration of signaling pathways.	10
III	Viral Genetics: General characteristics of viral genome, T4 virulent Phage - Structure-life cycle. Lambda temperate phage- Structure - Lytic and lysogenic cycle, Lysogenic repression. Genetic mapping of viruses, Recombination in viruses; Genetics of bacteriophage	8
IV	Diagnostic Virology: Biological activity of viruses, Physical, chemical, structural components, visualization, detection and enumeration: physical, biological, immunological and molecular methods. Isolation, purification, and cultivation: Embryonated eggs, laboratory animals and cell cultures. Serological methods, PCR-based assays and immunohistochemistry. Infectivity assays for phages and plant viruses, viral products expressed in infected cells. Cell culture, worm and animal models for studying viral infections for drug and vaccine development.	8
v	Emerging virus and challenges: Mechanism of host cell damage- Host cell 'shut off', apoptosis, necrosis, alteration of signaling pathways. Viruses and the future: Promises and problems. Emerging diseases, sources and causes of emergent virus diseases. Prospectus using medical technology to eliminate specific viral and other infectious diseases. Silver lining: viruses as therapeutic agents, viruses for gene delivery, viruses to destroy other viruses. Importance of studying modern virology.	10
	Tasks and Assignments:	
	 Each student is required to submit the following: Assignments on the underlying mechanism of entry, fusion and replication of viruses of their own choice. Model making of viruses's structure and their genetic material an deliver a seminar on the same topic. Midterm Internal exams 	
	References	
	 Bailey & Scott's Diagnostic Microbiology, 13th Edition, Patricia M. Tille, Elsevier, 2014. Basic Virology. Edward K. Wagner, Martinez J. Hewlett, David C. Bloom, David Camerini. Fields Virology. Vol 1 and 2. B.N. Fields, D.M. Knipe, P.M. Howley, R.M. Chanock, J.L. Melnick, T.P. Monath, B. Roizman, and S.E. Straus, eds.), 3rd Edition. Lippincott-Raven, Philadelphia, PA. Virology: Principles and Applications John Carter, Venetia Saunders. Virology Methods Manual. Brian W.J. Mahy (Editor), Hillar O. Kangro (Editor). Elsevier Science & Technology Books. 	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	2	2	1	3	2	2
CO5	1	1	1	1	2	3

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	C01	CO2	CO3	CO4	C05
Assignments	2	2	-	-	2
Seminar	1	1	2	2	-
Test	4	4	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	Ć03	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part - B (Essay - 5 x 10 = 50 marks)	10	10	10	10	10
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	particularly developed or		Not attended	CO1, CO2, CO5

2	Organiza -tionIncludes title, introduction, statement of the main idea with illustration and conclusion.	Includes title, introduction, statement of main idea and conclusion.	organizational cools are weak or missing	No organization	Not attended	CO1, CO2, CO5
---	--	--	---	--------------------	-----------------	---------------------

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	Exceptional knowledge of facts, terms, and concepts	knowledge of facts, terms,	facts, terms,	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	sequences	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

Sl. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
1	 What is significant about Foot- and-mouth disease virus? a) It was the first filterable animal virus b) Human adults are frequently infected by this virus c) It is an enveloped virus d) It belongs to Rhabdoviridae 	Recall	Remember
	 2The flu virus has developed a high rate of resistance to which of the following drugs? a) Rimantidine b) Zanamivir c) Ribavirin d) Amantadine 	Recall	Remember
	 Why do class 3 viruses transcribe a mRNA rather than simply disassociate and use the positive RNA as mRNA? a) Virions carry RNA transcriptase enzyme into the cell b) The virion RNA is translated into a single large polyprotein c) More energy efficient than denaturing the dsRNA d) (D) dsDNA is unstable 		Remember

	Regarding HIV binding to it's target cells:a) It binds to CD4 coreceptor only before fusion with host cell membrane.		
4	b) It binds to CD4 as well as CCR5 chemokine coreceptors.	Recognize	Remember
	c) It binds to CD4 and CXCR4 chemokine coreceptors for fusion.	U	
	d) It binds to CD4 and either of CCR5 or CXCR4 coreceptors for fusion with host cell membrane.		
	Which of the following experimental requirements makes the		
	siRNA approach unsuitable for determining the consequence		
	of silencing a gene of interest in an established cell line		
-	a) Expression of the gene of interest is integral to cell		D 1
5	viability	Recall	Remember
	b) End point RT-PCR and western blots are the only		
	available validation assays		
	c) Lipofectamine is the only available delivery method		
	d) (D) The cell line proliferation rate is relatively slow		
	is a variation of the plaque assay, but		
	instead of relying on cell lysis in order to detect plaque		
	formation, it employs immunostaining techniques.		
6	a) The Endpoint dilution assay	Recognize	Remember
	b) The focus forming assay		
	c) The MTT assay		
	d) The ELISA		
	If there is a capsomere at each of the 12 vertices of a simple		
	capsid; how this capsomere is termed when it is surrounded		
	by five other capsomeres		
7	a) Penton	Recognize	Remember
	b) Polyhedra	U	
	c) Icosahedral		
	d) d) Helical		
	When the genomes of negative-sense RNA viruses are		
	purified and introduced into cells that are permissive to the		
	original intact virus, what will occur?		
	a) No infection because virus transcriptase is not		
8	present	Recognize	Remember
Ŭ	b) Infection occurs because viral transcriptase is present	iteeognize	
	c) Higher rate of viral replication using RNA		
	polymerases		
	d) Attenuation		
	The term used to define when one of the influenza genes or		
	RNA strands is substituted with a gene or strand from		
	another influenza virus from a different animal host.		
9	a) Antigenic drift	Identify	Remember
7		Identify	Kennennber
	b) Antigenic shift		
1	c) Mutagenic shift d) Antigenic mutation		
	d) Antigenic mutation		
10	Measles caused by?	Identify	Remember
	a) Poxviruses	· · · ·	

	b) Influenzac) Morbilliviruses		
	d) Mortalliviruses		
	PART – B Essay Answer		
	The answer should not exceed 1000 words $5 \times 10 = 50$		
11	 a) Describe the structural forms used in the building of icosahedron viral particles b) Explain the organization of the Adeno, Herpes and Tobacco mosaic virus in terms of triangulation units, helical turn, number of capsomers, etc.) 	Explain	Understand
12	Cells produce mRNA by transcription of their DNA genomes. By contrast, single-stranded RNA genome viruses have three different strategies with respect to viral mRNA production. Briefly describe the production of mRNA for each of the following viruses. (a) Poliovirus (b) SARS-CoV-2 (c) Influenza	Differentiate Define	Understand
13	 a) Describe various human receptor molecules involved in the attachment of viruses b) Explain the underlying mechanisms of viral-receptor interaction of Poliovirus an Influenza A virus 	Cite Examples	Understand
14	 a) Explain two modes of the viral internalization process after the viral glycoprotein and receptor engagement b) how different viral capsids or virons are imported into the nucleus with examples 	Illustrate	Apply
15	 Write short notes on the following: a) Plaque assay b) Leaky scanning c) Viral Hemagglutination d) Hershey-Chase Experiment 	Describe	Analyse
16	Explain the type of gene therapy, and various viral vectors with suitable examples	Explain Discuss	Understand
17	Explain the following: a) siRNA b) shRNA c) antisense RNA	Illustrate	Apply

Course Code	Course Name	L	Т	Р	Credits
CMB203	Food & Industrial Microbiology	2	2	0	4

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Explains various techniques involved in detecting food borne pathogens	Understand

CO 2	Explains microbial growth kinetics and strain improvement techniques	Understand
CO 3	Deals with fermentation technology	Understand
CO 4	Deals with various fermented microbial products and its production	Understand
CO 5	Explains various food spoilage and preservation techniques	Understand
CO 6	Deals with Food safety and quality management systems	Understand

D. Sylla Units	Content	Hrs.
	Food Microbiology & Food-Borne Pathogens Importance and significance of microorganisms. Factors – Intrinsic and	
I	extrinsic factors affecting their growth in food. Food-borne diseases; detection and enumeration of their products in food- Culture-dependent methods- Sample collection, processing, analysis, surface testing, Direct microscopy, enumeration and isolation; Animal and cell culture models; Culture independent methods – Metagenomics, biosensor-, Immunologic- and nucleic acid-based detection – PCR, Molecular typing and differentiation; Analytical methods for detection of microbial toxins and metabolites.	12
П	Basics of Industrial Microbiology Historical account of microbes in industrial microbiology; sources and characters of industrially important microbes; their isolation, purification and maintenance; Screening of useful strains; primary and secondary screening; Strain improvement through random mutation and genetic engineering; types of fermentation and fermenters. Microbial growth kinetics in batch, continuous and fed-batch fermentation. Microbial production of metabolites.	12
III	Fermentation technology Concept and scope of microbial fermentation technology, inoculum, screening and selection, fermentation medium, fermentation processes, dual and multiple fermentation, continuous fermentation, batch fermentation; bioreactors, types, designs and functional characteristics; scaleup of fermentation; strain improvement fermentation economics; fermentation processes, downstream processing and product recovery.	12
IV	Fermented Microbial Products Milk, fermentation and dairy products. Food fermentationsManufacture of fermented foods- Meat and fishery products, plant products- Sauerkraut and fermented olives, breads, beverages. Microbial cells as food- SCP, mushroom cultivation. Source and applications of microbial enzymes, antioxidants, bio-surfactants, polysaccharides, flavors and colors. Probiotics and advantages, genetically modified foods. Microbiology and production of alcoholic beverages, organic acids, amino acids, and vitamins. Microbial Enzymes: Immobilization of microbial enzymes and whole cells; Industrial enzymes production; and their applications. Enzymes involved in microbial biocatalyst/transformations. Beverages– Role of microorganisms in food and dairy industry. Fermented beverages-beer, wine and other alcoholic beverages. Microbial preparation of Tempeh, sauerkraut, Miso, yogurt. Probiotics. Single cell protein. Mushroom cultivation, Acetic acid; Lactic	12

	acid; Gluconic acid. Microbial production and commercial application of Amylases, Proteases, Lipases. Biotransformation of steroids.						
V	 Food Spoilage & Food Preservation Organisms involved, characteristic features, dynamics and significance of spoilage of different groups of foods - Cereal and cereal products, vegetables and fruits, meat, poultry and sea foods, milk and milk products, packed and canned foods. Spoilage and defects of fermented foods. Food preservation- use of temperatures- Significance of psychrophilic microbes in cold-stored and frozen foods, Drying, Chemical, Modified atmosphere, Radiation, other food protection methods and microbial resistance. Food Safety & Ouality Management Systems 						
VI	Food Safety & Quality Management Systems General principles of food safety risk management, food packing and types of packing, Recent concerns on food safety- Safe food alternatives (Organic foods), Good agricultural practices (GAP), food park concept Through Private/ corporate sector, Food indicators of water and food safety and quality- Microbiological criteria of foods and their significance. The HACCP and ISO systems for food safety. Biofuels & Biopolymers: Biofuels (ethanol and methane) from organic residues; fuels from algae; Mushroom cultivation; other microbial products - Biopolymers and EPS, Bioplastics, Biosurfactants, effluent treatment, SCP.						
	Practical (Any two)						
	S.No. Apparatus and Tools	Concept					
		Intelligence					
	2 -	Personality					
	3 - Tasks and Assignments:	Self-Concept					
	 Assignment sets, experiments and/or seminars on advanced topics will be assigned References: James M. Jay., Loessner, M. J., and Golden D. A., 2005, Modern Food Microbiology, 7th edition. Arun K. Bhunia, 2008, Foodborne Microbial Pathogens- Mechanisms and Pathogenesis, Food Science text Series, Springer International, New York, USA. Doyle, M. P. & Beuchat, L. R., 2007, Food Microbiology-Fundamentals and Frontiers, ASM 						
	 Marriott, N. G. and Gravani R. B. 2006. Principles of Food Sanitation, Food Science text Series, Springer International, New York, USA. Nduka Okafor (2007). Modern Industrial Microbiology and Biotechnology. 1st Edition: Science Publishers. Richard H. Baltz, Julian E. Davies, and Arnold L. Demain (2010). Manual of Industrial Microbiology and Biotechnology. 3rd Edition, ASM Press. Modern Industrial Microbiology & Biotechnology by N. Okafer, Scientific Publishers, Enfield, USA, 2007. 						

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	2	2	1	3	2	2
CO5	1	1	1	1	2	3
CO6	1	1	1	1	2	3

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	-	-	2	2	-
Test	5	5	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part – B (Short Answer - 5 x 4 = 20 marks)	10	10	-	-	-
Part – C (Essay- 3 x 10 = 30 marks)	-	-	10	10	10
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	and supported	particularly developed or		Not attended	CO1, CO2, CO5

2	Organiza -tion 50%	main idea with	statement of main idea and	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5
---	--------------------------	----------------	----------------------------	---	--------------------	-----------------	---------------------

SI. No		100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	1	knowledge of facts, terms,	facts, terms,	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	sequences	d with		No coherent communicatio n	Not Attende d	CO3, CO4

Sl. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
1	Ropiness of bread is due to the growth of A. Bacillus subtilis; B. Endomycosis fibuligera; C. Serratia marcescens; D. Rhizopus stolonifera	Recognize	Remember
2	Custard rot egg is due to the presence of A. Proteus vulgaris; B. P. roteus; C. Pseudomonas fluorescens; D. Acinetobacter	Recall	Remember
3	Food additive commonly used in meat processing A. Benzoate; B. Sorbate; C. Nitrites; D. Propionic acid	Recognize	Remember
4	In sauerkraut production the initial colonization occurred by the invasion of A. Lactobacillus plantaurm; B. Leuconostoc mesenteroids; C. Lactobacillus brevis; D. Lactobacillus acidophilus	Recognize	Remember
5	The average protein content in the mushrooms is A. 50-70 %; B. 35-45 %; C. 20-40 %; D. 10-30 %	Recognize	Remember
6	Secondary packaging is used for	Recognize	Remember

	A. Containment; B. protection; C. Manual movement of		
	products; D. Convenience		
7	The FSSAI stands for A. Food safety and standards authority of India; B. Food security and standards authority of India; C. Food safety and security authority of India; D. Food standards and service authority of India	Recall	Remember
8	Among, which of the following are categories as food infection?A. Botulism; B. Salmonellois; C. Staphylococcal intoxication; D. None of these	Recall	Remember
9	Why botulism is a problem mainly in canned foods and not in a fresh food? A. Canned food is not sterilized, so bacteria such as C. botulinum can survive; B. Fresh food contains its own microbiota, which prevents the growth of pathogens such as C. botulinum; C. The canning process reduces the pH of food, and C. botulinum is an acidophile; D. botulinum is an obligate anaerobe and canning process removes O₂.	Identify	Remember
10	Gram-positive, rod-shaped bacterium, <i>Corynebacterium</i> glutamicumis is used for the production of? A. Amylases; B. Alcohol; C. Glutamic acid; D. Acetic acid	Identify	Remember
	PART – B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50		
11	 A. What are the aerobic and anaerobic changes taking place due to microbial spoilage in meat. B. Write the mechanism of microbial inactivation by radiation. C. Microbial changes taking place in food during spoilage. 	Describe	Analyse
12	Explain in detail the microbial spoilage of canned foods.	Explain Discuss	Understand
13	death point; c. Blanching; d. Freeze drying; e. Radicidation		Skill
14	What are the functions of packaging? and detail the biodegradable packaging.	Describe	Analyse
15	Define Food-borne diseases with examples explain how detection and enumeration of food born disease is performed in food products?		Skill

	DEITE				
Course Code	Course Name	L	Т	Р	Credits
CMB204	Agricultural Microbiology and Plant Pathology	2	2	0	4

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

Course Outcome Level

CO 1	CO1Explains various factors contributing to the soil environment including their structure, profile, microbial composition/interaction, and various bio-geo chemical cycles.	
CO 2	Explains the scope of utilizing microbes as biofertilizers.	Apply
CO 3	Deals with various plant diseases caused by various microbes along with their principle, symptoms, and control methods.	Analyze
CO 4	Deals with the epidemiology and forecasting principles of plant diseases.	Create
CO 5	Explains various principles and methods of plant disease control.	Skill
CO 6	Deals with the plant-microbe interactions at molecular level.	Apply

<u>b. Syllabus</u>

Units	Content	Hrs.
Ι	Soil Environment Microorganisms, soil structure, profile, physico-chemical conditions, Microbial composition, sampling techniques, microorganisms in organic decomposition. Bio-geochemical cycles – Carbon, sulphur, iron, phosphorus cycles & nitrogen cycles – Nitrogen fixation, nitrification, de-nitrification, Rhizospheric microorganisms, Siderophores. PGPM- Plant growth promoting microorganisms. Plant-microbe interactions. Mechanisms of plant growth promotion.	12
П	Biofertilizers Introduction, biofertilizers using N2-fixing microbes – phosphate solubilization- Rhizobium, Azatobacter, Azospirillum, Azolla; Anabaena symbiosis, blue green algae and mycorrhizal associations – endo and ecto mycorrhizae. Cultivation, mass production and inoculation of Rhizobium, Azotobacter, Azospirillum, Azolla and cyanobacteria as rice biofertilizer, Carrier based inoculants, methods of application, QC, agronomic importance. Application methods. Importance of neem cakes and oil on paddy field.	12
III	Major plant disease symptoms caused by fungi, bacteria, and viruses Development and stages of disease development, pathogen dissemination, Relationship between disease cycles and epidemics, pathogenicity genes, Genes controlling: Degradation of cuticle and cell wall, production of secondary metabolites-fungal toxins; Resistance (R) genes of plants, Plant diseases – Principles, symptoms and control: Fungal – General characteristics and different fungal diseases in plants like root rot, leaf spot, blight etc, Life cycle of the rice blast fungus Magnaporthe oryzae, Bacterial – Blight of rice and blast of rice, citrus canker, Xanthomonas. Viral and mycoplasmal – Bud necrosis of groundnut, citrus mosaic, little leaf of brinjal, tomato leaf curl. Disease forecasting and detection.	12
IV	Epidemiology and Forecasting of Plant Diseases Epidemic concept and historical development, pathometry and crop growth stages, epidemic growth and analysis. Common and natural logrithms, function fitting area under disease progress curve and correction factors, inoculum dynamics, population biology of pathogens, temporal spatial variability in plant pathogens. Survey, surveillance and vigilance, crop loss assessment and models. Principles and pre-requisites of forecasting, systems and factors affecting various components of	12

	forecasting, some early forecasting, procedures inoculum potential, modeling disease growth and				
V	Principles of plant disease control Protection - Diseases of field, vegetable, orchard and plantation crops and their control; causes and classification of plant diseases; principles of biological control of diseases. Methods to exclude pathogens from host- Quarantines and Inspections, Crop certification, Evasion or avoidance of pathogen, use of pathogen-free propagating material, pathogen-free seeds and vegetative propagating materials. Plant immunization; Direct protection; Integrated control, Biopesticides – Bacillus thuringiensis, B. sphaericus, B. popilliae, Pseudomonas syringae. Biocontrol- Microbial control - Trichoderma. Biological control – Use of Baculovirus, NPV virus, protozoa & fungi in biological control. Endophytic fungi - symbiotic and opportunistic associations, co-evolution and loss of reproductive structures, Secondary metabolite production, toxins – importance, toxicity to herbivores and insects. Use of endophytic fungi as biocontrol agents against plant diseases, insect herbivores.				
VI	As biocontrol agents against plant diseases, insect heroivores.Molecular plant microbe-interactionsCell signalling, Quorum sensing, and Biofilm formation. Invasion ofplant tissue: Resistance mechanisms against attack by plant pathogens.Molecular detection of pathogens. Integrated pest management-conceptsand components; host plant resistance-biological control of insect pests;Recycling of agricultural wastes – microbiology of biogas, bioethanoland value added products. Mushroom cultivation and vermicomposting.				
		and vermicomposing.			
	Practical (Any two)				
	Practical (Any two) S.No. Apparatus and Tools	Concept			
	S.No. Apparatus and Tools 1 -	Concept Intelligence			
	S.No. Apparatus and Tools 1 -	Intelligence			
	S.No. Apparatus and Tools	Intelligence Personality			
	S.No. Apparatus and Tools 1 - 2 -	Intelligence			
	S.No. Apparatus and Tools 1 - 2 - 3 -	Intelligence Personality Self-Concept			
	S.No. Apparatus and Tools 1 - 2 - 3 - Tasks and Assignments: Each student is required to submit the following: > Determine and analyze Major plant diseas	Intelligence Personality Self-Concept e symptoms caused by			
	S.No. Apparatus and Tools 1 - 2 - 3 - Tasks and Assignments: Each student is required to submit the following: > Determine and analyze Major plant diseas fungi, bacteria, and viruses	Intelligence Personality Self-Concept e symptoms caused by wth stages analysis.			

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	2	2	1	3	2	2
CO5	1	1	1	1	2	3
CO6	1	1	1	1	2	3

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	C01	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	-	-	2	2	-
Test	5	5	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part – B (Short Answer - 5 x 4 = 20 marks)	10	10	-	-	-
Part – C (Essay- 3 x 10 = 30 marks)	-	-	10	10	10
Total	12	12	12	12	12

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	well developed, supported with specific evidence & facts and examples	detailed, Developed and supported with	particularly		Not attended	CO1, CO2, CO5

			specific.				
2	Organiza -tion 50%	main idea with	statement of main idea and	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	Exceptional knowledge of facts, terms, and concepts	knowledge of facts, terms,	facts, terms,	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	sequences	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

Sl. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
	 Which of the following soil horizons show the highest density of microbial population? a) Horizon b) A Horizon c) B Horizon d) C Horizon 	Recognize	Remember
	 Cankers and galls are common disease signs for which of the following disease-causing plant pathogens? a) Fungi b) Bacteria c) Virus d) Protozoa e) Actinomycetes 	Recall	Remember

	Which of the following qualities does not describe properties		
	of high-performance soil?		
	a) Contains strong soil microbiome		
3	b) Contains optimal active and passive carbon	Recognize	Remember
	c) Contains approximately 40% of mineral matter	C	
	d) Contains approximately 40% of organic matter		
	e) Contains approximately 15% of water		
	In which of the following plant diseases, leaves get		
	shrunken and chlorophyll gets degraded?		
4	a) Rhizoctonia	Recognize	Remember
-	b) Citrus Canker	Recognize	Kennennoer
	c) Tundu disease of wheat		
	d) Mosaic disease of tobacco		
	The obligate parasitic fungi absorb the nutrients from the		
	host cells through?		
5	a) Haustoria	Recognize	Remember
5	b) Prosthecae	Recognize	Remember
	c) Flagella		
	d) Pili		
	Which of the following microorganism was responsible for		
	Bengal famine of 1943?		
6	a) Helminthosporium oryzae	Recognize	Remember
Ŭ	b) Puccinia triticina	10008	
	c) Hemileia vastatrix		
	d) Plasmopara viticola		
	The process of using a natural predator to control the spread of any plant pathogen is called as		
	a) Genetic engineering		
7	b) Biological control	Recall	Remember
	c) Confusing pathogen technique		
	d) Artificial pest control		
	In which disease of plant white mildew appears typically		
	on underside of leaves?		
	a) Cylindrocladium		_
8	b) Angular leaf Spot	Recall	Remember
	c) Downy Mildew		
	d) Black arm of Cotton		
	Management of plant viruses is possible through?		
	a) Pathogen derived resistance		
9	b) RNA silencing	Identify	Remember
	c) Resistance gene		
	d) All the above		
	Aflatoxin is produced by?		
	a) Albugo candida		
10	b) Asperfillus flavus	Identify	Remember
	c) Trichoderma harzianum		
1	d) Ceratocystis ulmi		
L			
	PART – B ESSAY Answer		
	PART – B ESSAY AnswerThe answer should not exceed 200 words $10x5 = 50$ Describe in detail the principles of biological control of plant	Describe	

	diseases?		
12	Write short notes on:a) Anabaena symbiosisb) Mycorrhizal associations	Explain Discuss	Understand
13	Compare and contrast the ways that the environment influences diseases in which the pathogen infects the plant shoots and the diseases in which the pathogen infects roots.	Assess	Skill
14	Write a note on plant quarantine and inspection	Describe	Analyse
15	Explain with diagrams: a) Nitrogen cycle b) Carbon cycle	Explain Discuss	Understand
116	How and to what extent can plant diseases be controlled by legislation and regulation?	Assess	Skill

	DLITL	SIEK II			
Course Code	Course Name	L	Т	Р	Credits
CMB205	Recombinant DNA and Protein Technology	2	2		4

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Understand the genetic codes and basic molecular biologies such as enzymes and vectors	Understand
CO 2	Understand the advanced molecular biology tools including cloning, and genomic library creation.	understand
CO 3	Study and apply the techniques for gene transfer	apply
CO 4	Understand the protein motif, domains ,etc.	Understand
CO 5	Understand and analyze the protein purification methods	analyse
CO6	Learning protein databases, tools and proteomics	skill

Units	Content	Hrs.
I	Basic molecular biology : History of nucleic acid, role of genes inside the cell, genetic code, genetic elements that control gene expression. Enzymes in recombinant DNA technology- DNA polymerase, reverse transcriptase, restriction endonucleases, polynucleotide kinase, terminal deoxynucleotidyl transferase, DNase, methylase, phosphatases, ligases RNase and their mode of action. Vectors in recombinant DNA technology Introduction to cloning vectors, biology and features of vectors, types of vector - plasmids, cosmids, phages, BAC and YAC and viruses	10
II	Gene isolation, cloning and expression, oligonucleotide synthesis, DNA sequencing methods, new generation sequencing (NGS), whole genome sequencing, site-directed mutagenesis, Gene mapping-restriction mapping, RFLP, RAPD, AFLP. Gene silencing, sequencing methods, probes and target sequences, Southern blotting, Northern blotting, in situ hybridization, nucleic acid mutagenesis in vivo and in vitro, Construction	10

III	of DNA Library: Construction of genomic and cDNA libraries, Screening libraries with gene probes, colony hybridization, plaque hybridization, screening by gain of function, immunological screening. Engineering microbes for the production of antibiotics, enzymes, Insulin, growth hormones, monoclonal antibodies etc. Gene Transfer Techniques: Gene transfer techniques in microbes, animals and plants - transformation, electroporation, microprojectile system, liposome-mediated gene transfer, DNA/calcium phosphate co- precipitate method, gene-gun, transfection with phage vectors etc. Agrobacterium based gene transfer in plants - Ti plasmid: structure and	10
	functions, Ti plasmid based vectors. Transgenic organisms from mice to rice, human genetic engineering and gene therapy, gene therapy methods. Protein technology: Primary, secondary, tertiary and quaternary	10
IV	structures; Motifs, super secondary structures and fold types; forces that stabilize protein fold, folding pathways, mutagenesis studies; Directed protein evolution, phage display, cell surface display, cell free display systems; Alternative scaffolds, combinatorial enzyme engineering; Protein engineering, Protein post translational modification; Mapping Protein-protein Interaction; Topology and Network motifs.	
V	Strategies for protein engineering ; Therapeutic protein engineering; site-directed mutagenesis, Protein expression systems and protein expression (pET vectors), eukaryotic and prokaryotic protein expression, secreted protein, purification, biophysical characterization, His-tag based purification, protein purification technique	10
VI	Identification of protein targets and biomarkers ; Protein arrays; Structural genomics and structural proteomics, Two dimensional gel electrophoresis, DIGE, Protein identification using computational tools. Proteomes, - Protein digestion and separation techniques. Role of Mass spectrometry in protein identification - MALDI TOF - Tandem MS and SALSA - peptide mass fingerprinting, affinity methods, yeast hybrid systems and protein arrays	10
	Tasks and Assignments:	
	Each student is required to submit the following:	
	 Each student should discuss one protein database and analyze the algorithm, applications, and features. Each student should take an assignment to determine the protein domain and motif in a functional protein. Participate in the subject-oriented quiz. Prepare a protocols for gene consensus sequence and respective cloning into a suitable vector. 	
	 References: Sandy Primose (2006). Principles of Gene Manipulation and Genomics. 7th Ed., Blackwell Publishers. Brown T.A. (2010). Gene Cloning and DNA analysis. 6th Edition, Wiley Dischargell 	
	Wiley-Blackwell. 3. David E Newton. (2010). DNA technology. ABC-CLIO, LLC	

4. Beiquan Mou and R	alph Scorza. (2011). Transgenic Horticultural	
Crops: Challenge	s and oppurtunities. CRC press.	
5. Pete Shanks. (2005). I	Human Genetic engineering. Avalon publishing	
groups.		

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	1	1	2
CO2	3	3	3	2	2	2
CO3	3	3	3	2	2	2
CO4	2	2	1	2	2	2
CO5	2	2	3	1	1	2

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	CO6	Total
Internal	7	7	5	7	7	7	40
External	10	10	10	10	10	10	60
Total	17	17	15	17	17	17	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5	CO6
Assignments	2	2	-	-	2	2
Seminar	-	-	2	2	-	
Test	4	4	4	4	4	2
Attendance	1	1	1	1	1	1
Total	7	7	7	7	7	5

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5	CO6
Part – A	2	2	r	2	2	2
(Objective - 10 x 1 = 10 marks)	2	2	2	2	2	
Part – B	8	8	8	8	8	8
(Essay - 10 x 5 = 50 marks)	0	0	0	0	0	
Total	10	10	10	10	10	10

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	detailed, Developed and supported	narticularly		Not attended	CO1, CO2, CO5

			facts mostly specific.				
2	Organiza -tion 50%	main idea with	statement of main idea and	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	1	knowledge of facts, terms,	facts, terms,	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	sequences	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

Sl. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
	The 5'-3' Exonuclease activity of DNA polymerase present		
1	 in a) Central domain b) N-Terminal c) C-Terminal d) None of the above 	Recognize	Remember
2	 The host-controlled variation in bacterial viruses is a) Heritable b) Non heritable c) Depends on the nutrient media where it grows d) All the above 	Recall	Remember
3	The following will not induce star activity of restriction enzyme a. High glycerol concentration [> 5% v/v] b. Low ionic strength [< 25 mM] c. Presence of alcohol	Recognize	Remember

	d. Use of Mg++ as the divalent cation.		
	Including the elements of cloning vector, the expression		
	vector may have these extra feature(s)		
1	a) Selectable marker and a reporter gene	Dagageriga	Remember
4	b) Transcription and translation initiation site	Recognize	Kemember
	c) Promotor and ribosomal binding site		
	d) Both c & b		
	The temperature at which one half of the DNA duplex will		
	dissociate to become single stranded is called as		
5	a) Denaturation temperature	Dagarina	Remember
5	b) Threshold temperature	Recognize	Kemember
	c) Melting temperature		
	d) temperature cycle		
	Approximate size of the Ti plasmid is		
	a) 200 kb		
6	b) 20 kb	Recognize	Remember
	c) 24 kb	C	
	d) 100 kb		
	Snake venom is an example of		
	a) Endonuclease		
7	b) Exonuclease	Recall	Remember
	c) Phosphotransferase		
	d) SI nuclease		
	RNase A is specific for		
	a) Pyrimidine nucleoside linkages		
8	b) Purine nucleoside linkages	Recall	Remember
	c) All the above		
	d) None of the above		
	In the biphasic switch mechanism, during the lysogenic		
	cycle this regulator is switched on		
0	a) Cro	L1	D 1
9	b) CI	Identify	Remember
	c) CII		
	d) CRI		
	In the phagemid-based vector system, the missing genes to		
	make a complete phage will be provided by		
	a) Helper plasmid	Idortif.	Domosiul
10	b) Cosmids	Identify	Remember
	c) Phasmids		
	Helper phage		
	PART – B ESSAY Answer		
	The answer should not exceed 200 words $10x 5 = 50$		
11	11. What are the components that make the Ti plasmid complete? Detail any of the derived vectors of Ti plasmid.	Describe	Analyse
	12. Explain the following a) digital droplet PCR principles	E- 1 '	
	and advantages	Explain D:	Understand
	b) LAMP assav	Discuss	
1.2	Detail a) Probe hybridization assay		C1 '11
13	b) Illumina sequencing.	Assess	Skill
	/0.		l

14	What are the different phage-mediated vectors used in molecular biology? Explain with examples	Describe	Analyse
15	If you are asked to develop a cDNA library from the immunized animals B cells. How will you perform it?	Explain Discuss	Understand
16	Briefly explain the four major classes of proteins based on their shape and solubility.	Assess	Skill
17	 Write short notes on a) Rossmann fold (5 marks) b) Any two forces that determine protein structure marks) 	Asses	Analyse

Course Code	Course Name	L	Т	Р	Credits
PMB201	Practical Microbiology	0	0	2	2

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Deals with various basic microbiology techniques of culturing and detection	Understand
CO 2	Deals with isolation and identification of various fungi	Understand

Units	Content		Hrs.		
Ι	Part 1 Introduction to good laboratory practices and preparation of different minimal, complex and differential media, Isolation of bacteria from air, water, soil, Endospore staining, Flagella staining and Capsule staining, Bacterial culture techniques-Liquid broth culture & Pure culture techniques-serial dilution technique, Pour plate, spread plate, streak plate techniques, Measurement of bacterial population by turbidimetry and colony counting by serial dilution of samples, Bacterial growth curve, Antibiotic sensitivity tests-disc method, Preservation of pure cultures: slant preparation, water stock, glycerol stock, Biochemical tests for bacterial identification, Detection of bacterial pathogens by PCR method.				
П	Part II Methods of isolation and identification of fungi by traditional methods, Preparation of pure culture and preservation of culture, Isolation and identification of endophytic fungi from plants, Observation and identification of mycorrhiza, Isolation and identification of fungi from seeds, Study of soil fungi from varied geographical origins, Isolation of antibacterial/ antimycotic compounds from fungi, Staining and observation of plant pathogenic fungi, Study of asexual reproduction in Saccharomyces, staining of human fungal pathogens using LPCB and culture.				
	Practical (Any two)S.No.Apparatus and Tools	Concept	16		

1	Detection of bacterial pathogens by PCR	Understanding			
2	Identification of mycorrhiza	Understanding			
3	Bacterial growth measurement	Understanding			
Tasks a	and Assignments:				
Assignment sets, experiments and/or seminars on advanced topics will be assigned References:					
Microbiology, A laboratory manual by James Cappuccino and Natalie Aherman 10 th edition					
Koneman's Color atlas and textbook of diagnostic microbiology, 7 th					
edition by Gary W. Procop, Deirdre L. Church, Geraldine S Hall					
and William M, Janda					

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	3	3

d. Evaluation Scheme

	CO1	CO2	Total
Internal	20	20	40
External	30	30	60
Total	50	50	100

e. Mapping Course Outcome with Internal Assessment (50 Marks)

	CO1	CO2	CO3	CO4	CO5
Practical	3	3	3	3	3
Seminar	-	-			-
Test	4	4	4	4	4
Attendance	3	3	3	3	3
Total	10	10	10	10	10

f. Mapping Course Outcome with External Assessment (50 Marks)

Category	CO1	CO2	CO3	CO4	CO5	CO6
Part – A	2	2	2	2	2	2
(Objective - 10 x 1 = 10 marks)		_	_	-	_	
Part – B	8	8	8	8	8	8
(Essay - 10 x 5 = 50 marks)	0	0	0	0	0	
Total	10	10	10	10	10	10

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content	Ideas are detailed, well developed, supported with specific evidence & facts and examples	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion	statement of the	Includes title, introduction, statement of main idea and conclusion.	organizational tools	No organization	Not attended	CO1, CO2, CO5

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	1	knowledge of facts, terms,	facts, terms,	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	sequences	Communicate d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

i. Model Question Paper

Sl. No.	Model Questions	Specification	Level
	Part – A: Demosntration Multiple choice 20 x 2 = 40		
1	Demonstration of Bacteria isolation from seawage	Recognize	Remember
2	PCR	Recognize	Remember

	PART – B Spotter The answer should not exceed 200 words 5 x 2 = 10		
11	Identify the image and elaborate it.	Recognize	Analyze
12	Identify the image and elaborate it.	Recognize	Analyze

Course Code	Course Name	L	Т	Р	Credits
PMB 202	Practical Microbiology IV			2	2

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Learn and perform the isolation of different microorganisms and characterize them	skills
CO 2	Learn and perform immunological assays	skills
CO 3	Microscopic examination of samples for ova, cysts, parasites	analyze
CO 4	Learn and perform molecular biological experiments such as isolation of different nucleic acids, cloning etc.	analyze
CO 5	Learn and perform polymerase chain reactions	skill

Units	Content	Hrs.				
I	 Part I: Isolation of bacteriophages from sewage, Estimation of virus yields - plaque assay, Routes of inoculations in embryonated eggs, Haemagglutination test, Hemagglutination inhibition assay, Biocontrol assay on insect larvae using NPV, ELISA test, Study of virus infected plant material, One step growth curve of bacteriophage by Burst size determination, Demonstration of identification of arthropod vectors of viral transmission. Microscopic examination of parasites of medical importance (ova, cysts, blood smear examination), stool concentration, staining and observation. 					
П	Part II: Isolation of Genomic DNA and quantification, Isolation of Plasmid and quantification, Preparation of Vector and Insert by restriction digestion, Preparation of competent cells using CaCl2, Ligation reaction of restriction digested Vector and Insert, Transformation of recombinant DNA, PCR amplification of gene of interest, Isolation of RNA and quantification, Reverse transcriptase PCR, Restriction Fragment Length Polymorphism (RFLP) analysis, RAPD and phylogenetic tree, Quantitative Real Time – PCR (Demonstration)					
	 Tasks and Assignments: Each student is required to submit the following: ✓ Each student should discuss complete details of one of the display techniques. ✓ Students should demonstrate the screening techniques for the effective selection of high-affinity biomolecules. ✓ Participate in the subject-oriented quiz. 					

✓ Visit industry to learn techniques and advancements.	
References:	
Phage Display In Biotechnology and Drug Discovery, Second Edition: edited by Sachdev S. Sidhu, Clarence Ronald Geyer.	
Bacteriophage Applications - Historical Perspective and Future Potential: Authors: Nicastro, J., Wong, S., Khazaei, Z., Lam, P., Blay, J., Slavcev, R.A.y	
Phage Display: A Laboratory Manual, Page 532 By Carlos F. Barbas, Dennis R. Burton, Jamie K. Scott, Gregg J. Silverman	

	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	1	1
CO2	3	3	3	2	2
CO3	3	3	3	2	2
CO4	2	2	1	2	2
CO5	2	2	3	1	1

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	10	10	10	10	10	50
External	10	10	10	10	10	50
Total	17	17	15	17	17	100

e. Mapping Course Outcome with Internal Assessment (50 Marks)

	CO1	CO2	CO3	CO4	CO5
Practical	3	3	3	3	3
Seminar	-	-			-
Test	4	4	4	4	4
Attendance	3	3	3	3	3
Total	10	10	10	10	10

f. Mapping Course Outcome with External Assessment (50 Marks)

Category	CO1	CO2	CO3	CO4	CO5	CO6
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2	2
Part – B (Essay - 10 x 5 = 50 marks)	8	8	8	8	8	8
Total	10	10	10	10	10	10

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	well developed, supported with specific evidence & facts and	11	developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	statement of the	introduction,	tools	No organization	Not attended	CO1, CO2, CO5

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	1	knowledge of facts, terms,	facts, terms,	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	sequences	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

SI. No.	Model Questions	Specification	Level
	Part – A: Demonstration Multiple choice 20 x 2 = 40		
1	Demonstration of phage isolation from sewage	Recognize	Remember
2	Amplification of given gene sequence	Recognize	Remember
	PART – B Spotter The answer should not exceed 200 words 5 x 2 = 10		

11	Identify the image and elaborate it.	Recognize	Analyze
12	Identify the image and elaborate it.	Recognize	Analyze

SEMESTER – III

Course Code	Course Name	L	Т	Р	Credits
CMB301	Bioinformatics,	2	2	0	4
	Biostatistics, and				
	Intellectual Property Rights				

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Explains various basic concepts in bioinformatics providing an overview on the same.	Understand
CO 2	Learn sequence alignment and algorithms.	Apply
CO 3	Deals with various data types and their presentation.	Analyze
CO 4	To deals with various statistical tests and software for data analysis.	Create
CO 5	Explains Intellectual property rights, their basics, and forms	Skill

Units	Content	Hrs.
I	Overview of Bioinformatics Overview of databases in bioinformatics Biological databases: Sequence and Structure databases – Protein Sequence databases – SWISS-PROT, PIR - Nucleic Acid Sequence Databases – GenBank, EMBL, DDBJ –pattern and motif searches databases – PROSITE, BLOCKS, PRINTS, PFAM – structure databases – PDB – structural classification – SCOP, CATH, PRINTS, BLOCKS, PRINTS, PRODOM, PFAM.	12
п	Sequence Alignment Algorithms Pairwise alignment - Local and Global alignment concepts – Databases searches for homologous sequences - FASTA and BLAST - Multiple sequence alignment – Progressive Alignment - Clustal W, methods for phylogenetic tree construction.	12
ш	Qualitative and quantitative data Cross-sectional and time series data, discrete and continuous data, nominal, ordinal, ratio, and interval scales; Presentation of data: Frequency distribution and cumulative frequency distribution, Measures of variability z-score and standard normal distribution, diagrammatic and graphical presentation of data, construction of bar, pie diagrams, histograms, frequency polygon, and frequency curve.	12
IV	Introduction to the t-statistic the independent samples t-test, the dependent (paired) samples t-test, One-way ANOVA, simple linear regression analysis, Chi-Square and other non-parametric tests, introduction to multivariate analysis.: Software for Data Analysis: Introduction to the software, required data	12

	format, tables, descriptive measures, graphs tables/charts.	and charts, presentation of	
V	Introduction to IPR IPR, forms of IPR and Intellectual property property with respect to intellectual creativit property. WTO: agency controlling trade reference to biotechnological affairs, TRI related to patents novelty, non-obviousness, etc. Type of patents. Indian patent act and for Patent application, Revocation of patent, I with case studies on patent, Commercialization	ty, Tangible, and Intangible among nations, WTO with Ps. WIPO, EPO. Concept utility, anticipation, prior art preign patents. Patentability, infringement and Litigation	12
	Practical (Any two)		
	S.No. Apparatus and Tools	Concept	
	1 -	Intelligence	
	2 -	Personality	
	3 -	Self-Concept	
	 Each student is required to submit the follow Demonstrate the use of Sequence and Perform Pairwise alignment - Local a concepts using different type of sequ Determine and analyze Cross-sectidiscrete and continuous data. References: 1. Arthur. M. Lesk, Introduction to Bioinform Oxford University Press. K. Najarian, S.Naja Eichelberger, Systems Biology and : A Com Edition, 2009, CRC Press. ISBN: 978-14200 2. Gupta SC, Kapoor VK (2014). Fundament Statistics, S Chand and sons, India. 3. Gupta SP (2009). Statistical Methods, 28t Sons, India. 4. Bioethics and Biosafety by M.K. Sateesh, Publishing, 2010. 5. Law Relating to Intellectual Property Right Lexis Nexis (2013) ISBN: 9788180389894. 6. Law and Strategy of biotechnological pate publication. (2007) ISBN: 075069440, 9780 	d Structure databases. and Global alignment ences. onal and time series data, matics, 4th Edition, 2014, arian, S. Gharibzadeh, C. N. putational Approach 1st 046502 tals of Mathematical h edition, S Chand and IK International hts, VK Ahuja, 2nd Edition, ents by Sibley. Butterworth	

<u> </u>	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	2	2	1	3	2	2
CO5	1	1	1	1	2	3

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	-	-	2	2	-
Test	5	5	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part – B (Short Answer - 5 x 4 = 20 marks)	10	10	-	-	-
Part – C (Essay- 3 x 10 = 30 marks)	-	-	10	10	10
Total	12	12	12	12	12

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	11	developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	statement of the	statement of	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	knowledge of facts, terms,	knowledge of facts, terms,	Considerable knowledge of facts, terms, and concepts	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	sequences	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

Sl. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
	 It is the most common measure of central tendency and least affected by the sample fluctuations a) Median b) Mean c) Mode d) All the above 	Recognize	Remember
2	 From the following which is not an intangible property a) Customer lists b) Trade secrets c) Business licenses d) Art objects 	Recall	Remember
3	cover eight areas for IPRs legislation including patent, copyright and geographical indications a) WTO b) PCT c) TRIPS d) WIPO	Recognize	Remember
	 From the following which diagrammatic representation shows the behavior of a variable over time. a) Bar chart b) Frequency polygons c) line diagram d) Pie diagram 	Recognize	Remember

Which of the following is an example of Homology and similarity tool? 5 a) BLAST 7 b) P M 1	
a) BLAST	
a) BLAST	
	ze Remember
b) RasMol	
c) EMBOSS	
d) PROSPECT	
In the pairwise sequence alignment method, what does the	
gap score represents?	
6 a) Match Recogniz	ze Remember
b) Mismatch	
c) Insertion/Deletion	
d) Homology	
Which of the following is used as a repository for the 3-	
dimensional structure data for large biological molecules?	
7 a) NCBI Recall	Remember
b) EMBL	Kemember
c) Swiss-Prot	
d) PDB	
BLOSUM matrices are used for?	
a) Multiple sequence alignment	
8 b) Pair wise sequence alignment Recall	Remember
c) Phylogenetic analysis	
d) All of the above	
Sequence alignment helps scientists	
a) To trace out evolutionary relationships	
9 b) To infer the functions of newly synthesized genes Identify	y Remember
c) To predict new members of gene families	
d) All of these	
When you are comparing two or more than two sequences of	
same or different organisms, what is the type of the	
alignment?	
10 a) Global Identify	y Remember
b) Pairwise sequence	
c) Local	
d) Multiple sequence	
PART – B ESSAY Answer The encoded and encoded 200 merceds 10 = 5 = 50	
The answer should not exceed 200 words $10x 5 = 50$	
Calculate the linear correlation coefficient for the following 11 data $X = 4$ 8 12 16 and $Y = 5$ 10 15 202 Describ	e Analyse
$\begin{bmatrix} 11 \\ \text{data. } X = 4, 8, 12, 16 \text{ and } Y = 5, 10, 15, 20? \end{bmatrix}$ Describ	
	Inderstand
12 What are the functions of WIPO and TRIPS? Explain	S
12 what are the functions of wIPO and TRIPS? Discuss	
12 what are the functions of wIPO and TRIPS? Discuss 13 Detail the obviousness in deciding novelty? Assess	
12 what are the functions of wIPO and TRIPS? Discuss	s Skill

What are the initiatives taken by Government of India towards protection of IPR?	Explain Discuss	Understand
Describe in detail the multiple sequence alignment, its type and uses in analyzing the sequences?	Assess	Skill

SENIESTER - III								
Course Code	Course Name	L	Т	Р	Credits			
CMB302	Marine Microbiology	2	1		3			

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	To understand microbial processes of marine environment.	Understand
CO 2	To get in depth knowledge in marine microbe dynamics	Apply
CO 3	To obtain knowledge about microbial applications in space research	Analyze
CO 4	To gain an insight of microbes that can grow in extreme environments	Create
CO 5	In study the microbes of importance in seafood industry	Skill

Units	Content	Hrs.
I	Introduction to Microbial Oceanography – marine ecosystem: benthic & littoral zone, saltpan, mangroves and estuarine microbes, microbial loop - marine microbial communities - phytoplankton, protozoa, bacteria, fungi, and virus. Microbial endosymbionts – epiphytes – coral microbial association, sponge-microbial association.	12
п	Dynamics of Marine Microbes - Carbon cycle: Phototrophic microbes, the oceanic carbonate system and global warming - Nitrogen cycle: Nitrogen fixers – Iron limitation – ocean fertilization phosphorus cycle; Decomposition of organic matter; Bioleaching and biodeteroriation of natural and synthetic materials.	12
ш	Seeing microbes from space: Geo-satellite, Monitoring, Remote sensing, Modeling and Scaling. Several satellite-borne sensors, including the Sea- Viewing Wide Field-of-View Sensor (SeaWiFS), Moderate-Resolution Imaging Spectroradiometer (MODIS-Terra, MODIS Aqua), Medium Resolution Imaging Spectrometer (MERIS), and the Ocean Colour Monitor (OCM) Case study : Viewing Mapping Vibrio species and Trichodesmium . cholerae.	12
IV	Microbes of extreme environments – mechanism of extremophiles – halophiles –halorhodopsin – deep sea microbes – microbes of hydrothermal vents - thermophilic, alkalophilic, asmophilic and barophilic, psychrophilic microorganisms – hyperthermophiles and halophiles –importance in biotechnology, geo-satellite, monitoring and remote sensing	12

V	Seafood microbiology - normal genera associated with fish, food spoilage, fish & human pathogens; zoonotics – Brief account on aquaculture pathogens - Vibriosis – shrimp diseases – WSSV– MBV etc. Rapid diagnosis of contamination in sea foods and aquaculture products.	12						
	Tasks and Assignments:							
	Each student is required to submit the following:							
	 ✓ Each student should discuss one publication in the field of marine microbiology 							
	 ✓ Each student should take an assignment to write about an application of marine microbiology 							
	✓ Participate in the subject-oriented quiz.							
	 ✓ Prepare a presentation about diseases and zoonotics with seafood ✓ References: 							
	Colin Munn, Marine Microbiology: Ecology & Applications 2nd Edition. Garland Science,							
	Taylor & Francis, 2009. ISBN: 978-0815365174.							
	 David L. Kirchman, Microbial Ecology of the Oceans, 2nd Edition, John WIley & Sons, 2008. 							
	ISBN: 978-0470043448.							
	3. M.T. Madigan and J.M. Martinko, Biology of Microorganisms, 11th Edition, Pearson							
	Prentice Hall, USA, 2006.							
	4. Bhakuni, D.S. and Rawat, D.S. (2005). Bioactive marine natural							
	products. Anamaya							
	Publishers, New Delhi. 5 Joseph Selvin and A. S. Ninewa (2000). Shrimp Disease Management							
	5. Joseph Selvin and A. S. Ninawe (2009). Shrimp Disease Management. ANE Publishers.							

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	1	1	2
CO2	3	3	3	3	2	3
CO3	3	3	3	3	2	3
CO4	2	2	1	3	2	3
CO5	2	2	3	1	1	2

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	-	-	2	2	-

Test	5	5	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	Ć03	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part – B (Short Answer - 5 x 4 = 20 marks)	10	10	-	-	-
Part – C (Essay- 3 x 10 = 30 marks)	-	-	10	10	10
Total	12	12	12	12	12

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	well developed,	and supported	particularly developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	statement of the	Includes title, introduction, statement of main idea and conclusion.	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	knowledge of facts, terms,	knowledge of facts, terms,		knowledge of facts, terms,	Not Attende d	CO3, CO4

2	Presentation 50%	sequences	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4	
---	---------------------	-----------	--------	-------------	----------------------------------	---------------------	-------------	--

SI. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
	 leached from mangrove litter, controls bacterial population and reduces harmful activities of virulent pathogens. a. Organic acids b. Tannins c. Methane d. All of the above 	Recognize	Remember
	 Blind roots to overcome respiration problem in anaerobic soil conditions a. Prop roots b. Pneumatophores c. Stilt roots d. Adventitious roots 	Recall	Remember
	Zone beyond the continental shelf and occurs at depth of 150-4000 m a. Abyssal zone b. Bathyal zone c. Hadal zone d. Intertidal zone	Recognize	Remember
4	is the most common and diverse bacterial phyla in sponges a. Chloroflexi b. Dendrilla c. Gamma- proteobacteria d. none of the above	Recognize	Remember
	Enzyme isolated from halophilic bacteria of mangrove sediments a. Permease b. L-asparaginase c. Arylsulfayase d. all of the above	Recognize	Remember
6	are dominant at and below the chemocline a. Sulfate reducing bacteria b. Methanogenic bacteria c. Cyanobacteria d. Green Sulphur bacteria	Recognize	Remember

7	 High GC content contributes to the thermostability of the genome. a) True b) False c) Depends on organism d) Not applicable for thermophiles 	Recall	Remember
8	Protein adaptations of thermophiles include which of the following? a. More compact core containing disulfide bonds b. Less hydrogen bonds c. Greater average hydrophilicity for interior residues d. All the above	Recall	Remember
9	 Presence of lipid quinones enhances which of the following properties of membranes? a) Fluidity b) Stability c) Permeability d) All the above 	Identify	Remember
10	 S-layer glycoprotein requires which of the following for stability? A. Presence of tetraether lipids B. Presence of monolayer membrane C. High salt concentrations D. None of the above 	Identify	Remember
	PART – B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50		
11	Explain the microbial diversity in mangrove ecosystem.	Describe	Analyse
12	Explain in detail the microbial diversity in estuaries.	Explain Discuss	Understand
13	Explain the spatial distribution of microorganisms in marine ecosystem	Assess	Skill
14	Explain the interaction between sponge-specific microbial symbionts.	Describe	Analyse
15	Explain in detail (with diagrams) the "salt-in" and "salt-out" strategy employed by halophiles for survival in saline environments.	Explain Discuss	Understand
16	List out 4 genome adaptations of thermophiles	Assess	Skill
17	Write an essay on halorhodopsin	Asses	Analyse

Course Code	Course Name	L	Т	Р	Credits
CMB303	Environmental Microbiology	2	1		3

	Course Outcome	Level
CO 1	To understand the activities of the microorganisms	Understand
COT	at large in nature/ environment	Onderstand
CO 2	To evaluate the roles of microorganisms in ecosystems	Apply
CO 3	To gain an insight of plant microbe interactions	Analyze
CO 4	To understand the precise natural habitats and activities of	Create
04	microorganisms	Create
CO 5	In study the microbes application in waste management	Skill

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

Units	Content	Hrs.
I	Microbial Ecology: Interaction between abiotic and biotic factors in an ecosystem, ecological niche, limiting factor, concept of community, fluctuation and succession. Ecological pyramid, energy flow, food chain, food webs and their dynamism, stability and complexity of ecosystem. Interactions between microbes and organisms at trophic levels: commensalism, mutualism, parasitism and predation with examples. Microbial Communities: Microbial mats and their significance.	12
II	Aquatic Microbiology: The aquatic environment - major environmental conditions influencing microflora. Distribution of microorganisms in the aquatic environments – freshwater environment, estuaries and marine environment. Microbiology of drinking water, water pollution, purification of water for human consumption. Assessment of microbial status in water and waste water. Wastewater characteristics, Effluent treatment processes (like trickling filter, activated sludge, oxidative pond, anaerobic digestion and chemical disinfection).	12
ш	Plant-Microbe Interactions: Introduction, concepts and scope of agricultural microbiology, Interrelationships between plants and microorganisms, Rhizosphere and phyllosphere microorganisms and their interactions with plants. Plant pathogens (bacterial and fungal), mechanisms of plant pathogenicity, symptoms of plant diseases, transmission of plant diseases. Signalling events in pathogenesis and resistance to pathogens. Molecular basis of plant disease control along with cultural practices, chemical and biological control. Microbial control of insects. Beneficial association between plant and microorganisms (association of plants with cyanobacteria, actinomycetes and fungus).	12
IV	Cyanobacteriology: Origins of life and photosynthesis, Diversity of cyanobacteria, Molecular ecology and environmental genomics of cyanobacteria, comparative genomics of marine cyanobacteria, stress response-regulatory system, Molecular biology of cyanelles and chloroplast, supramolecular membrane organization; phycobilisome and phycobiliprotein structures, Use of cyanobacteria in the study of the structure and function of photosystem II and cytochrome complex; photosystem I, F-type ATPase in Cyanobacteria, Biochemistry and molecular regulation of CO2 metabolism and genetic analysis of	12

	cyanobacteria, Heterocyst metabolism and development, Differentiation of hormogonia and relationships with other biological processes.				
V	Microbiology of wastewater and solid waste treatment: - biological, aerobic, anaerobic, primary, secondary and tertiary treatments. Activated sludge and Anaerobic digestion process. Treatment of industrial effluents by microorganisms. Composting. Microbiology of degradation of xenobiotics. Bioremediation: Factors affecting the bioremediation process, Bioremediation of toxic waste sites; Role of microbes; Microbial degradation of environmental pollutants-industrial solvents, pesticides, petroleum hydrocarbons, xenobiotics; bioremediation practices and technologies. Biofertilizers, Biofuel production from organic wastes, Bioenergy, Bioleaching.				
	Tasks and Assignments:				
	Each student is required to submit the following:				
	 ✓ Each student should discuss one publication in the field of environmental microbiology ✓ Each student should take an assignment to write about an application of microbes in waste management ✓ Participate in the subject-oriented quiz. ✓ Prepare a presentation about plant microbe interactions ✓ References: 				
	 Prabhakaran, G. 2004. Introduction to Soil and Agricultural Microbiology, Himalaya Publishing House. George N. Agrios. 2005. Plant Pathology. 5th Edition. Academic 				
	 Press. 3. Raina M. Maier, Ian A. Pepper and Charles Gerba (2009) Environmental Microbiology (2nd edition). Academic Press. 4. Antonia Herrero & Enrique Flores. The Cyanobacteria: Molecular Biology, Genomics and Evolution, Caister Academic Press, 2008. 5. T. A. Sarma. Handbook of Cyanobacteria, CRC press, 2012. 6. Samit Ray. Cyanobacteria, New Age International Pvt. Ltd Publishers, 2006. 				
	 7. Percy M. Gault & Harris J. Marler. Handbook on Cyanobacteria: Biochemistry, Biotechnology and Applications (Bacteriology Research Developments), Nova Science Publishers, Inc. 2009. 				

c. Mapping of Program Outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	1	1	2
CO2	3	3	3	3	2	3
CO3	3	3	3	3	2	3
CO4	2	2	1	3	2	3
CO5	2	2	3	1	1	2

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40

External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	-	-	2	2	-
Test	5	5	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	Ć03	CO4	CO5
Part – A	2	2	2	2	2
(Objective - 10 x 1 = 10 marks)					
Part – B	10	10	_	_	_
(Short Answer - 5 x 4 = 20 marks)	10	10			
Part – C	_	_	10	10	10
(Essay- 3 x 10 = 30 marks)			10	10	10
Total	12	12	12	12	12

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	well developed,	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	particularly developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	statement of the main idea with	Includes title, introduction, statement of main idea and conclusion.	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs	
-----------	----------	------	-----	-----	-----	----	------------------------	--

1	Understandin g	facts, terms,	knowledge of facts, terms,	Considerable knowledge of facts, terms, and concepts	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	Presentation 50%	d with logical	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

Sl. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
1	 The concept of microbial loop was first introduced in A. Aquatic ecosystem B. Marine ecosystem C. Terrestrial ecosystem D. Air ecosystem 	Recognize	Remember
	The types of interaction in which Bdellovibrio penetrates the cell wall and multiplies between the wall and the plasma membrane, a periplasmic mode of attack, followed by lysis of the prey and release of progeny A. Parasitism B. Predation C. Ammensalism D. Competition		Remember
	Protozoan from the termit's gut breakdown cellulose and enables termites to use wood as food source, is a type of interaction A. Mutualism B. Synergism C. Commensalism D. Cometablosm		Remember
4	Competitive exclusion principle was described by A. Gause B. Wommack C. Colwell D. None of the above	Recognize	Remember
	 Which of the following is a part of constitutive host defense in plants? A. Cork layer B. Tyloses C. Secretions like gums 	Recognize	Remember

Translocation of effectors of pathogen into the plant cell is Recognize done by which of the following secretion systems in bacteria? Recognize 6 A. Type I Recognize 7 C. Type III Recognize 8 SAR prepares plant for a second attack by pathogen Recall 7 Of the pathogen Recall 7 Of the pathogen Recall 8 SAR brings about local cell death and sealing off Recall 7 Of the pathogen Recall 8 D. SAR once acquired lasts for a period of several days Recall 8 Rastonia amylovora Recall 8 Rastonia solanacearum Recall 9 A. Erwinia amylovora Recall 9 A. Primary treatment Identify 9 A. Ortobacter Identify 10 B. Clostridium Identify 11 B. Clostridium Identify 12 Wh		D. Shape of stomata		
6 A. Type I Recognize Remember 6 B. Type II D. All the above Recognize Remember 7 C. Type II D. All the above Recolution Recolution 7 A. SAR prepares plant for a second attack by pathogen Recall Remember 7 C. Both Salicilic acid and Jasmonic acid are involved in SAR Recall Remember 8 SAR once acquired lasts for a period of several days Recall Remember 8 Mich of the following Bacteria is responsible for causing disease in plants-spanning a very large number of families and hundreds of species? Recall Remember 8 Ralstonia solanacearum Recall Remember 9 A. Erwinia amylovora Recall Remember 9 A. Primary treatment Identify Remember 9 A. Primary treatment Identify Remember 9 A. Trimary treatment Identify Remember 9 A. Trimary treatment Identify Remember 9 A. Jotobacter Identify Remember 10 B. Clostridium Identify Remember		1 0 1		
6 B. Type II Recognize Remember 0 D. All the above Note of the following statements is not applicable to Systemic acquired resistance (SAR)? Recall Remember 7 A. SAR prepares plant for a second attack by pathogen B. SAR brings about local cell death and scaling off of the pathogen Recall Remember 7 Of the pathogen Recall Recall Remember 8 SAR brings about local cell death and scaling off in SAR Recall Remember 9 SAR once acquired lasts for a period of several days Recall Remember 8 Raistonia solanacearum Recall Remember 9 A. Erwinia amylovora Recall Remember 9 A. Primary treatment Identify Remember 0. Sotobacter Identify Remember Remember 10 B. Clostridium Identify Remember 11 Define ecosystem and what are different types of cosystems? Describe Analyse 12 What is non-host resistance? Using well labelled diagrams. briefly explain the two types of non-host resistance? Describe Analyse 13 What are trickling filters, describe their r				
B. Type II D. All the above Which of the following statements is not applicable to Systemic acquired resistance (SAR)? Recall Remember B. SAR brings about local cell death and sealing off of the pathogen Recall 7 Of the pathogen Recall 8 B. SAR once acquired lasts for a period of several days Recall Which of the following Bacteria is responsible for causing disease in plants-spanning a very large number of families and hundreds of species? Recall 8 B. Ralstonia solanacearum Recall C. Xanthomonas oryzae D. Botrytis cinerea Biological oxidation processes usually referred as biological treatment, are the most common form of Identify 9 B. Scondary treatment Identify D. All of these Identify Which one of the following is not a biofertiliser?? A. Azotobacter 10 B. Clostridium Identify C. Bacillus thuringiensis D. Azolla D. Azolla PART – B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50 Explain 11 Define ecosystem and what are different types of cosystems? Describe 12 What is non-host resistance? Using well labelled diagrams. briefly expl	6		Recognize	Remember
D. All the above Which of the following statements is not applicable to Systemic acquired resistance (SAR)? A. SAR prepares plant for a second attack by pathogen B. SAR brings about local cell death and sealing off of the pathogen C. Both Salicilic acid and Jasmonic acid are involved in SAR D. SAR once acquired lasts for a period of several days Which of the following Bacteria is responsible for causing disease in plants-spanning a very large number of families and hundreds of species? 8 Ralstonia solanaccarum C. Xanthomonas oryzae Recall D. Botrytis cincrea Identify Biological oxidation processes usually referred as biological treatment, are the most common form of Remember 9 B. Secondary treatment Identify C. Tertiary treatment Identify D. All of these Identify Which one of the following is not a biofertiliser?? A. Azotobacter 10 B. Clostridium Identify C. Bacillus thuringiensis D. Azolla PART - B ESSAY Answer Explain The answer should not exceed 200 words 10x 5 = 50 Analyse 11 Define ecosystem and what are different types of coosystems? Describe	Ŭ		recognize	itemenioei
Which of the following statements is not applicable to Systemic acquired resistance (SAR)? A. SAR prepares plant for a second attack by pathogen B. SAR brings about local cell death and scaling off of the pathogen C. Both Salicilic acid and Jasmonic acid are involved in SAR D. SAR once acquired lasts for a period of several days Which of the following Bacteria is responsible for causing disease in plants-spanning a very large number of families and hundreds of species? A. Erwinia amylovora B. Ralstonia solanacearum C. Xanthomonas oryzae D. Botrytis cincrea Biological oxidation processes usually referred as biological treatment, are the most common form of 9 A. Primary treatment D. All of these Which one of the following is not a biofertiliser?? A. Azotobacter 10 B. Clostridium C. Bacillus thuringiensis D. Azolta PART – B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50 11 Define cosystem and what are different types of cosystems? Describe Analyse 12 What is non-host resistance? Using well		• •		
Systemic acquired resistance (SAR)? A. SAR prepares plant for a second attack by pathogen Recall Recall SAR brings about local cell death and sealing off Recall Remember Of the pathogen Recall Recall Remember C. Both Salicilic acid and Jasmonic acid are involved in SAR Recall Remember Which of the following Bacteria is responsible for causing disease in plants-spanning a very large number of families and hundreds of species? Recall Remember 8 Ralstonia solanaccarum Recall Remember 9 A. Erwinia amylovora Recall Remember 9 Botrytis cinerea Identify Remember 9 A. Primary treatment Identify Remember 0 B. Condary treatment Identify Remember 9 A. Azotobacter Identify Remember 10 B. Clostridium Identify Remember 11 Define cosystem and what are different types of cosystems? Describe Analyse 12 What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance? Discuss Skill 13 What is the				
A. SAR prepares plant for a second attack by pathogen Recall B. SAR brings about local cell death and sealing off Recall 7 of the pathogen Recall C. Both Salicilic acid and Jasmonic acid are involved in SAR Recall D. SAR once acquired lasts for a period of several days Recall Which of the following Bacteria is responsible for causing disease in plants-spanning a very large number of families and hundreds of species? Recall 8 Ralstonia solanacearum Recall C. Xanthomonas oryzae D. Botrytis cinerea Recall Biological oxidation processes usually referred as biological treatment, are the most common form of A. Primary treatment Identify 9 A. Primary treatment Identify Remember 9 A. Zotobacter Identify Remember 10 B. Clostridium Identify Remember C. Bacillus thuringiensis D. Azolla PART - B ESSAY Answer Describe Analyse 12 What is non-host resistance? Using well labelled diagrams, Explain Discuss Skill 13 What are trickling filters, describe their role and importance in waste water treatment? Assess Skill 14				
B. SAR brings about local cell death and scaling off of the pathogen Recall Remember 7 C. Both Salicilic acid and Jasmonic acid are involved in SAR Recall Remember D. SAR once acquired lasts for a period of several days Which of the following Bacteria is responsible for causing disease in plants-spanning a very large number of families and hundreds of species? Recall Remember 8 A. Erwinia amylovora Recall Remember 9 A. Erwinia solanacearum C. Xanthomonas oryzae D. Botrytis cinerea Recall Remember 9 A. Primary treatment Identify Remember 0 A. Primary treatment Identify Remember 0 A. Jotobacter Identify Remember 10 B. Clostridium Identify Remember 11 Define ecosystem and what are different types of ecosystems? Describe Analyse 12 What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance? Describe Analyse 13 What are trickling filters, describe their role and importance in waste water treatment? Assess Skill 14 Describe bioremediation? Name the important factors arfecting the bioremediation? Name the		• •		
7 of the pathogen Recall Remember 7 Of the pathogen Recall Remember 8 D. SAR once acquired lasts for a period of several days Remember 8 Mundreds of species? Recall Remember 8 A. Erwinia amylovora Recall Remember 9 Bological oxidation processes usually referred as biological treatment, are the most common form of Identify Remember 9 A. Primary treatment Identify Remember 0. All of these Identify Remember 10 Bacillus thuringiensis Identify Remember 11 Define cosystem and what are different types of cosystems? Describe Analyse 12 What is non-host resistance? Using well labelled diagrams, Explain Discuss Understand 13 What are trickling filters, describe their role and importance in waste water treatment? Assess Skill 14 Describe bioremediation process. 1 Inderstand Inderstand				
C. Both Salicilic acid and Jasmonic acid are involved in SAR	_			D 1
in SAR D. SAR once acquired lasts for a period of several days Which of the following Bacteria is responsible for causing disease in plants-spanning a very large number of families and hundreds of species? Recall 8 A. Erwinia amylovora Recall B. Ralstonia solanacearum Recall C. Xanthomonas oryzae D. Botrytis cinerea Biological oxidation processes usually referred as biological treatment, are the most common form of A. Primary treatment J. All of these Identify Which one of the following is not a biofertiliser?? A. Azotobacter 10 B. Clostridium Identify C. Bacillus thuringiensis D. Azolla PART - B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50 11 Define ecosystem and what are different types of ecosystems? Describe Analyse 12 What is non-host resistance? Using well labelled diagrams, Explain Discuss Understand 13 in waste water treatment? Assess Skill 14 Describe bioremediation? Name the important factors affecting the bioremediation process. Describe Analyse	1		Recall	Remember
D. SAR once acquired lasts for a period of several daysWhich of the following Bacteria is responsible for causing disease in plants-spanning a very large number of families and hundreds of species?8A. Erwinia amylovora B. Ralstonia solanacearum C. Xanthomonas oryzae D. Botrytis cinereaRecall9Biological oxidation processes usually referred as biological treatment, are the most common form of A. Primary treatment D. All of theseIdentify9RecemberRemember9A. Secondary treatment D. All of theseIdentify10B. Clostridium C. Bacillus thuringiensis D. AzollaIdentify9RART - B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50Remember11Define ecosystem and what are different types of ecosystems? Diriefly explain the two types of non-host resistance in plants. Diriefly explain the two types of non-host resistance in plants. DiscussDescribe Analyse13What is the major mechanism of pathogen removal during Explain La bioremediation process.Describe Analyse				
Which of the following Bacteria is responsible for causing disease in plants-spanning a very large number of families and hundreds of species? Recall Remember 8 A. Erwinia amylovora Recall Remember 9 B. Ralstonia solanacearum Recall Remember 9 B. Robustonia solyzae Identify Remember 9 B. Secondary treatment Identify Remember 9 B. Secondary treatment Identify Remember 0. All of these Identify Remember 10 A. Azotobacter Identify Remember 11 Define ecosystem and what are different types of ecosystems? Describe Analyse 12 What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants. Discuss Understand 13 m waste water treatment? Assess Skill Assess Skill 14 Describe bioremediation? Name the important factors affecting the bioremediation process. Describe Analyse				
disease in plants-spanning a very large number of families and hundreds of species?RecallRemember8A. Erwinia amylovora B. Ralstonia solanacearum C. Xanthomonas oryzae D. Botrytis cinereaRecallRemember9Biological oxidation processes usually referred as biological treatment, are the most common form of A. Primary treatment D. All of theseIdentifyRemember9Secondary treatment D. All of theseIdentifyRemember10B. Clostridium C. Bacillus thuringiensis D. AzollaIdentifyRemember11Define ecosystem and what are different types of ecosystems? briefly explain the two types of non-host resistance in plants.Describe DiscussAnalyse13What are trickling filters, describe their role and importance in waste water treatment?LuderstandLuderstand14Describe bioremediation process.Name the important factors affecting the bioremediation process.DescribeAnalyse		D. SAR once acquired lasts for a period of several days		
disease in plants-spanning a very large number of families and hundreds of species?RecallRemember8A. Erwinia amylovora B. Ralstonia solanacearum C. Xanthomonas oryzae D. Botrytis cinereaRecallRemember9Biological oxidation processes usually referred as biological treatment, are the most common form of A. Primary treatment D. All of theseIdentifyRemember9Secondary treatment D. All of theseIdentifyRemember10B. Clostridium C. Bacillus thuringiensis D. AzollaIdentifyRemember11Define ecosystem and what are different types of ecosystems? briefly explain the two types of non-host resistance in plants.Describe DiscussAnalyse13What are trickling filters, describe their role and importance in waste water treatment?LuderstandLuderstand14Describe bioremediation process.Name the important factors affecting the bioremediation process.DescribeAnalyse		Which of the following Bacteria is responsible for causing		
8 A. Erwinia amylovora Recall Remember 8 Ralstonia solanacearum Recall Remember C. Xanthomonas oryzae D. Botrytis cinerea Recall Remember 9 Biological oxidation processes usually referred as biological treatment, are the most common form of Identify Remember 9 A. Primary treatment Identify Remember 0 Secondary treatment Identify Remember 10 A. Azotobacter Identify Remember 10 B. Clostridium Identify Remember 11 Define ecosystem and what are different types of ecosystems? Describe Analyse 12 What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants. Discuss Understand 13 What are trickling filters, describe their role and importance in waste water treatment? Assess Skill 14 Describe bioremediation? Name the important factors affecting the bioremediation process. Linderstand 15 What is the major mechanism of pathogen removal during Explain Linderstand				
8 Ralstonia solanacearum Recall Remember C. Xanthomonas oryzae D. Botrytis cinerea Remember Biological oxidation processes usually referred as biological treatment, are the most common form of A. Primary treatment Identify 9 B. Secondary treatment Identify Remember C. Tertiary treatment Identify Remember D. All of these Identify Remember 10 B. Clostridium Identify Remember C. Bacillus thuringiensis Identify Remember D. Azolla PART – B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50 Indentify 11 Define ecosystem and what are different types of ecosystems? Describe Analyse 12 What is non-host resistance? Using well labelled diagrams, in waste water treatment? Discuss Understand 13 What are trickling filters, describe their role and importance in waste water treatment? Assess Skill 14 Describe bioremediation? Name the important factors affecting the bioremediation process. Describe Analyse 15 What is the major mechanism of pathogen removal during Explain Understand		hundreds of species?		
B. Raistona solanacearum C. Xanthomonas oryzae D. Botrytis cinerea Biological oxidation processes usually referred as biological treatment, are the most common form of 9 A. Primary treatment Identify 9 B. Secondary treatment Identify C. Tertiary treatment Identify Remember 0 A. Primary treatment Identify Remember 0 A. C. Tertiary treatment Identify Remember 10 B. Clostridium Identify Remember 10 B. Clostridium Identify Remember 11 Define ecosystem and what are different types of ecosystems? Describe Analyse 12 What is non-host resistance? Using well labelled diagrams, Explain Understand 13 What are trickling filters, describe their role and importance in plants. Discuss Skill 14 Describe bioremediation? Name the important factors affecting the bioremediation process. Describe Analyse 15 What is the major mechanism of pathogen removal during Explain Understand	0	A. Erwinia amylovora	Decell	Domomhor
D. Botrytis cinereaIdentifyBiological oxidation processes usually referred as biological treatment, are the most common form of A. Primary treatment B. Secondary treatment C. Tertiary treatment D. All of theseIdentifyWhich one of the following is not a biofertiliser?? A. AzotobacterIdentifyRememberB. Clostridium C. Bacillus thuringiensis D. AzollaIdentifyRememberPART - B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50IdentifyRemember11Define ecosystem and what are different types of ecosystems? briefly explain the two types of non-host resistance in plants. in waste water treatment?DescribeAnalyse13What are trickling filters, describe their role and important affecting the bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse14What is the major mechanism of pathogen removal duringExplain LunderstandLunderstand	0	B. Ralstonia solanacearum	Recall	Kemember
Biological oxidation processes usually referred as biological treatment, are the most common form of9A. Primary treatment B. Secondary treatment C. Tertiary treatment D. All of theseIdentifyWhich one of the following is not a biofertiliser?? A. AzotobacterIdentify10B. Clostridium C. Bacillus thuringiensis D. AzollaIdentifyPART - B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50Describe11Define ecosystem and what are different types of ecosystems? briefly explain the two types of non-host resistance in plants.Explain Discuss13What are trickling filters, describe their role and importance in waste water treatment?Assess14Describe bioremediation? Name the important factors affecting the bioremediation process.Describe15What is the major mechanism of pathogen removal duringExplain Lunderstand		C. Xanthomonas oryzae		
treatment, are the most common form ofIdentifyRemember9A. Primary treatmentIdentifyRememberB. Secondary treatmentD. All of theseIdentifyRemember0All of theseIdentifyRemember10B. ClostridiumIdentifyRemember10B. ClostridiumIdentifyRemember11D. AzollaIdentifyRemember12What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants.DescribeAnalyse13What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplainUnderstand		D. Botrytis cinerea		
treatment, are the most common form ofIdentifyRemember9A. Primary treatmentIdentifyRememberB. Secondary treatmentD. All of theseIdentifyRemember0All of theseIdentifyRemember10B. ClostridiumIdentifyRemember10B. ClostridiumIdentifyRemember11D. AzollaIdentifyRemember12What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants.DescribeAnalyse13What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplainUnderstand		Biological oxidation processes usually referred as biological		
9A. Primary treatment B. Secondary treatment C. Tertiary treatment D. All of theseIdentifyRememberWhich one of the following is not a biofertiliser?? A. AzotobacterIdentifyRemember10B. Clostridium C. Bacillus thuringiensis D. AzollaIdentifyRememberPART - B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50DescribeAnalyse11Define ecosystem and what are different types of ecosystems? briefly explain the two types of non-host resistance in plants.DescribeAnalyse13What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplain LunderstandLunderstand				
9 B. Secondary treatment Identify Remember C. Tertiary treatment D. All of these Identify Remember Which one of the following is not a biofertiliser?? A. Azotobacter Identify Remember 10 B. Clostridium Identify Remember C. Bacillus thuringiensis Identify Remember D. Azolla Identify Remember PART - B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50 Image: Second and what are different types of ecosystems? Describe Analyse 11 Define ecosystem and what are different types of ecosystems? Describe Analyse 12 What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants. Discuss Understand 13 What are trickling filters, describe their role and importance in waste water treatment? Assess Skill 14 Describe bioremediation? Name the important factors affecting the bioremediation process. Describe Analyse 15 What is the major mechanism of pathogen removal during Explain Understand			T1 / C	D 1
C. Tertiary treatment D. All of theseIdentifyWhich one of the following is not a biofertiliser?? A. AzotobacterIdentify10B. Clostridium C. Bacillus thuringiensis D. AzollaIdentifyPART - B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50Remember11Define ecosystem and what are different types of ecosystems? briefly explain the two types of non-host resistance in plants.Describe Discuss12What are trickling filters, describe their role and importance in waste water treatment?Assess Skill14Describe bioremediation? Name the important factors affecting the bioremediation process.Describe Landause15What is the major mechanism of pathogen removal during ExplainLunderstand	9	•	Identify	Remember
Which one of the following is not a biofertiliser?? A. AzotobacterIdentifyRemember10B. Clostridium C. Bacillus thuringiensis D. AzollaIdentifyRemember PART - B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50 II11Define ecosystem and what are different types of ecosystems?DescribeAnalyse12What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants.Explain DiscussUnderstand13What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplainUnderstand		•		
A. AzotobacterIdentifyRemember10B. ClostridiumIdentifyRememberC. Bacillus thuringiensisD. AzollaIdentifyRememberPART – B ESSAY AnswerThe answer should not exceed 200 words 10x 5 = 5011Define ecosystem and what are different types of ecosystems?DescribeAnalyse12What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants.DiscussUnderstand13What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplainUnderstand				
10B. Clostridium C. Bacillus thuringiensis D. AzollaIdentifyRememberPART - B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50IdentifyRemember11Define ecosystem and what are different types of ecosystems?DescribeAnalyse12What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants.Explain DiscussUnderstand13What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplainUnderstand		Which one of the following is not a biofertiliser??		
C. Bacillus thuringiensis D. AzollaPART – B ESSAY Answer The answer should not exceed 200 words 10x 5 = 5011 Define ecosystem and what are different types of ecosystems?Describe12 What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants.Explain Discuss13 What are trickling filters, describe their role and importance in waste water treatment?Assess14 Describe bioremediation? Name the important factors affecting the bioremediation process.Describe15 What is the major mechanism of pathogen removal duringExplain Explain		A. Azotobacter		
D. AzollaPART - B ESSAY Answer The answer should not exceed 200 words 10x 5 = 5011 Define ecosystem and what are different types of ecosystems?Describe12 What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants.Discuss13 What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14 Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15 What is the major mechanism of pathogen removal duringExplainUnderstand	10	B. Clostridium	Identify	Remember
PART - B ESSAY Answer The answer should not exceed 200 words 10x 5 = 50Analyse11 Define ecosystem and what are different types of ecosystems?DescribeAnalyse12 What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants.Understand13 What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14 Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15 What is the major mechanism of pathogen removal duringExplainUnderstand		C. Bacillus thuringiensis		
The answer should not exceed 200 words10x 5 = 5011Define ecosystem and what are different types of ecosystems?DescribeAnalyse12What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants.Explain DiscussUnderstand13What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplainUnderstand				
11Define ecosystem and what are different types of ecosystems?DescribeAnalyse12What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants.Explain DiscussUnderstand13What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplainUnderstand				
12What is non-host resistance? Using well labelled diagrams, briefly explain the two types of non-host resistance in plants.Explain DiscussUnderstand13What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplainUnderstand				
12briefly explain the two types of non-host resistance in plants.DiscussUnderstand13What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplainUnderstand				Analyse
briefly explain the two types of non-host resistance in plants.Discuss13What are trickling filters, describe their role and importance in waste water treatment?AssessSkill14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplainUnderstand	12	What is non-host resistance? Using well labelled diagrams,		Understand
13 in waste water treatment? Assess Skin 14 Describe bioremediation? Name the important factors affecting the bioremediation process. Describe Analyse 15 What is the major mechanism of pathogen removal during Explain Understand				
14Describe bioremediation? Name the important factors affecting the bioremediation process.DescribeAnalyse15What is the major mechanism of pathogen removal duringExplainUnderstand			Assess	Skill
What is the major mechanism of pathogen removal during Explain Understand		in waste water treatment?		
What is the major mechanism of pathogen removal during Explain Understand	14	Describe bioremediation? Name the important factors	Describe	Analyse
15 what is the major mechanism of pathogen removal during Explain Understand		What is the major mechanism of astheress.	Evelsie	-
L logituda tratmont	15	What is the major mechanism of pathogen removal during activated sludge treatment?	Explain Discuss	Understand

	SLIT		-		
Course Course Name Code		L	Т	Р	Credits
CMB304	Pharmaceutical Microbiology	3	0	0	3

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Understand the basics antibiotics and synthetic antimicrobial agents	Understand
CO 2	Explain mode of action of antibiotics and chemotherapeutics, various techniques in pharmaceutical microbiology	Apply
CO 3	Understand about vaccines, sterilization and sterility testing, application of microbial enzymes	Analyze
CO 4	learn about regulatory practices in the pharmaceutical industries	Create
CO 5	understand good laboratory practices and good manufacturing practices	Apply

Units	Content	Hrs.
I	Antibiotics and synthetic antimicrobial agents: production of antibiotics and synthetic antimicrobial agents, (Aminoglycosides, β lactams, tetracyclines, ansamycins, macrolide antibiotics), Antifungal antibiotics, antitumor substances. Peptide antibiotics, Chloramphenicol, Sulphonamides and Quinolinone antimicrobial agents. Chemical disinfectants, antiseptics and preservatives. Commercial production of steroids, alkaloids, interferon, human proteins-insulin, somatostatin, vaccines and anti-cancer agents	16
Π	Antibiotics and chemotherapeutics: Mode of action, Antibiotic sensitivity assays- disc method; replica plating technique; Antibiotic resistance in bacteria- factors of development of resistance, Quorum sensing, Biofilms, anti-fungal drugs and their mode of action, anti-fungal sensitivity testing, antifungal resistance. Molecular principles of drug targeting, Drug delivery system in gene therapy, Bacterial resistance to antibiotics, Mode of action of bacterial killing by quinolinones, Bacterial resistance to quionolinones, Mode of action of non – antibiotic antimicrobial agents, Penetrating defenses – How the antimicrobial agents reach the targets (cellular permeability barrier, cellular transport system and drug diffusion)	16
ш	Microbial production and Spoilage of pharmaceutical Products Microbial contamination and spoilage of pharmaceutical products (sterile injectables, non-injectables, ophthalmic preparations and implants) and their sterilization. Sterilization control and sterility testing (heat sterilization, D value, z value, survival curve, Radiation, gaseous and filter sterilization) Chemical and biological indicators Manufacturing procedures and in process control of pharmaceuticals. New vaccine technology, DNA vaccines, synthetic peptide vaccines, multivalent subunit vaccines. Vaccine clinical trials. Immobilization procedures for	16

	pharmaceutical applications (liposomes). Macromolecular, cellular and	
	synthetic drug carriers. Biosensors in pharmaceuticals. Application of	
	microbial enzymes in pharmaceuticals.	
	Regulatory practices, biosensors and applications in Pharmaceuticals	
	Financing R&D capital and market outlook. IP, BP, USP. Government	1.0
IV	regulatory practices and policies, FDA perspective. Reimbursement of	16
	drugs and biologicals, legislative perspective. Rational drug design.	
	Quality Assurance and Validation Good Manufacturing Practices (GMP)	
	and Good Laboratory Practices (GLP) in pharmaceutical industry.	
V	Regulatory aspects of quality control. Quality assurance and quality	16
v	management in pharmaceuticals ISO, WHO and US certification. Design	10
	and layout of sterile product manufacturing unit. (Designing of	
	Microbiology laboratory) Safety microbiology laboratory.	
	Tasks and Assignments:	
	Each student is required to submit the following:	
	✓ Assignments	
	✓ Research seminars	
	References:	
	1. Janeway Immunobiology. 9th Edition. Publisher-Garland Science,	
	2016	
	2. Abul K Abbas, Andrew H Lichtman & Shiv Pillai, Cellular &	
	Molecular Immunology, 8th Edition 2014, Elsevier	
	3. Roitt's Essential Immunology, 13th Edition, Peter J. Delves, Seamus J.	
	Martin, Dennis R. Burton, Ivan M. Roitt 2016, Wiley-Blackwell.	
	4. William E. Paul. Fundamental Immunology. 7th Edition. Lippincott	
	Williams and Wilkins, 2012.	

c. Mapping of Program Outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	3	2	3
CO2	2	4	3	3	2	3
CO3	1	2	2	3	3	4
CO4	2	3	1	3	2	2
CO5	3	3	2	1	3	2

d. Evaluation Scheme

	CO1	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	20	20	20	20	20	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	-	-	2	2	-

Test	5	5	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2
Part – B (Essay- 5 x 10 = 50 marks)	10	10	10	10	10
Total	12	12	12	12	12

g. Rubric for Assignments

SI. No.		100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	well developed, supported with specific evidence & facts and examples	Developed and supported	developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	statement of the main idea with illustration and	statement of main idea and	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	knowledge of facts, terms,	knowledge of facts, terms,	Considerable knowledge of facts, terms, and concepts	knowledge of facts, terms,	Not Attende d	CO3, CO4

2	Well Presentation 50% Well Communicate d with logica sequences, examples, an references	d with		No coherent communicatio n	Not Attende d	CO3, CO4
---	--	--------	--	----------------------------------	---------------------	-------------

Sl. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
1	What is virus attenuation in practical terms for successful vaccine discovery? a. Passage of live virus from cell to cell and a search for less virulent mutants b. As (a) but using low temperature (33°C) to select cold adapted mutants c. Direct random mutagenesis to create a less virulent mutant d. Recovery of a naturally occurring 'wild' virus which is naturally less virulent	Recognize	Remember
2	 2. Which of the following is incorrect about a microarray? a. It is a slide attached with a high-density array of immobilized DNA oligomers representing the entire genome of the species under study b. Array of immobilized DNA oligomers cannot be cDNAs c. Each oligomer is spotted on the slide and serves as a probe for binding to a unique complementary cDNA d. It is the most commonly used global gene expression profiling method 	Recall	Remember
3	profiling method 3 equipment is used for aseptic production. a. Bionic limbs b. Molecular computer c. Blow/fill/seal d. None of the above	Recognize	Remember
4	 4. All of the following are LIVE vaccines Except: a. MMR b. Yellow fever c. BCG d. Hepatitis A 	Recognize	Remember
5	 5. The time in minutes at a specific temperature needed to kill a population of cells is the: a. F value b. Decimal reduction time c. D value 	Recognize	Remember

	d. Z value		
	6. Which of the following antifungal drugs is most effective		
	in the treatment of invasive aspergillosis?		
6	a. Ketocozole	Decemine	Damanhan
6	b. fluconazole	Recognize	Remember
	c. Voriconazole		
	d. Clotrimazole		
	All of the following are LIVE vaccines except:		
	a. MMR		
7	b. Yellow fever	Recall	Remember
	c. BCG		
	d. Hepatitis A		
	The time in minutes at a specific temperature needed to kill a		
	specific pathogen of cells is the		
	a. F value	D 11	D 1
8	b. Decimal reduction time	Recall	Remember
	c. D value		
	d. Z value		
	The chemical used most often to inactivate the biological		
	toxin in a toxoid vaccine is:		
9	a. Thiomerosal	I.J. and for	Damantan
9	b. Formaldehyde	Identify	Remember
	c. Neomycin		
	d. Acetic acid		
	Pneumoccocal polysaccharide vaccines:		
	a. Contain purified capsular polysaccharide		
10	b. Do nto prevent exacerabation of chronic bronchitis	Identify	Remember
10	c. Can provide limited cross protection against non-	Identify	Kennennber
	vaccine serotypes		
	d. Provide long-lasting immunity ie. More than 10 years		
	PART – B Essay Answer		
Tł	ne answer only 5 questions and answer should not exceed		
	400 words 5 x 10 = 50		
	Detail the history and development of whole live attenuated,		
	inactivated, toxoid, cellculture based, recombinant subunit,	Describe	Analyse
	DNA/mRNA and vectored vaccines. What are the currently	Deserioe	7 mary 50
	approved vaccines for COVID-19 in India.		
	For Staphylococcus aureus in turkey stuffing, $D60 = 15.4$		
	min and $z = 6.8$ °C How long would it take to reduce a	Explain	Understand
14	population of S. aureus in turkey stuffing from 105 cells to	Discuss	Charlstand
<u> </u>	100 cells at 55°C, 60°C, and 65°C?		
	Illustrate and explain the design of a typical fermenter for		
	culturing filamentous fungi for the industrial production of	Assess	Skill
15	β -lactam antibiotics. Detail the extraction, purification and	1 100000	JKIII
	GMP of Penicillin V and Cephaolposrin		
14	Describe Biosensors. Propose a strategy to detect viruses	-	Understand
	using biosensors.	Discuss	Chaerbland

15	What are the various types of rational drug designing methods?	Explain Discuss	Understand
16	Classify antifungal drugs on their mechanism of action and detail the mode of action of azole and echinocandins	Describe	Analyse
17	Details the history and development of whole live attenuated, inactivated, toxoid, cell culture based, recombinant subunit, DNA/mRNA and vectored vaccines. What are the currently approved vaccines for COVID-10 in India?		Analyse

Course Code	Course Name	L	Т	Р	Credits
CMB 305	Medical Microbiology	2	1		3

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	Understand the basic principles of medical Microbiology such as how bacteria responds to human and how human responds to microbes. To study on commensal, pathogenic and especially gut microbiome.	Understand
CO 2	Understand the morphology, epidemiology, bio-chemical, genetic characteristics of pathogenic microorganisms	understand
CO 3	To study on different viruses and fungi their pathogenesis and epidemiology.	apply
CO 4	To study on antimicrobial compounds to fungi, bacteria, viruses and parasites.	Understand
CO 5	Understand the treatment, prevention of pathogenic diseases	analyse

Units	Content	Hrs.
I	Basic Principles of Medical Microbiology : Bacterial morphology and bacterial structures, Commensal and pathogenic microbial flora in humans, Sterilization. Disinfection and antisepsis, Basic concepts of immune responses to infectious agents, antimicrobial vaccines, General principles of laboratory diagnosis, microscopic principles and applications, molecular diagnosis, serologic diagnosis.	9
Π	Medical Bacteriology : Staphylococcus and related organisms, Streptococcus, Enterococcus and other Gram Positive cocci, Bacillus, Listeria and Erysipelothrix, Corynebacterium and other Gram positive rods, Nocardia and related bacteria, Mycobacterium, Neisseria and related genera, Enterobacteriaceae, Vibrio and Aeromonas, Campylobacter and Helicobacter, Pseudomonas and related organisms, Haemophilus and related bacteria, Bordetella, Brucella and Francisella, Legionella, Anaerobic spore-forming Gram positive bacilli, Anaerobic nonspore-forming Gram positive bacteria, Anaerobic Gram negative bacteria, Treponema, Borrelia and Leptospira, Mycoplasma and Ureaplasma, Rickettsia and Orientia, Ehrlichia, Anaplasma and Coxiella, Chlamydiaceae, Role of bacteria in disease.	9

III	Medical Virology: Mechanisms of viral pathogenesis, Antiviral agents, Laboratory diagnosis of viral diseases, Poxviruses, human herpesviruses, Adenoviruses, Papillomaviruses, Polyomaviruses, Parvoviruses, Picornaviruses, Coronaviruses and Noraviruses, Paramyxoviruses, Orthomyxoviruses, Rhabdoviruses, Filoviruses, Bornaviruses, Reoviruses, Togaviruses, Flaviviruses, Bunyaviridae, Arenaviridae, Retroviruses, hepatitis viruses, Unconventional agents and prions, Role of viruses in disease.	9
IV	Unit 4: Medical Mycology: Pathogenesis of fungal diseases, antifungal agents, Laboratory diagnosis of fungal diseases, Superficial and cutaneous mycoses, Subcutaneous mycoses, Systemic mycoses caused by endemic dimorphic fungal pathogens, Opportunistic mycoses, Fungal and fungal-like infections of unusual etiology, Mycotoxins and mycotoxicoses, Role of fungi in disease.	9
V	Unit 5: Medical Parasitology: Pathogenesis of parasitic diseases, anti- parasitic agents, laboratory diagnosis of parasitic diseases, intestinal and urogenital protozoa, blood, and tissue protozoa, nematodes, trematodes, cestodes, arthropods, Role of parasites in disease.	9
	 Each student is required to submit the following: Each student should discuss complete details of one bacterium in the assignment including their morphological, biochemical, and genomic characterization. Each student should take an assignment to assess the pathology and epidemiology of any microorganisms in the syllabus. Participate in the subject-oriented quiz. Visit to a diagnostic lab. References: David Greenwood, Richard Slack, John Peutherer, Mike Barer, Medical Microbiology 17th Ed., Churchill Livingstone, 2007. Murray P.R., Pfaller M.A., Tenover F.C., & Yolken R.H. 2007. Clinical Microbiology, ASM Press. Bauman, R.W. 2009. Microbiology: with Diseases by Body System; Benjamin Cummings. 	
	 Sherris, John C, Medical Microbiology: An Introduction to Infectious Diseases, 2nd Edition, Elsevier. David Wilks, Mark Farrington and David Rubenstein 2010. Infectious Diseases Manual: Blackwell Science. George F. Brooks, Karen C. Carroll, Janet S.Butel, Stephen A. Morse. 2007. Jawetz, Melnick & Adelberg's Medical Microbiology. 24th Ed. McGraw-Hill Professional. Nester E. W., Anderson D. G. & Nester M. T. 2006. Microbiology: A Human Perspective, McGraw Hill. Harvey, R.A., Champe, P.C. & Fisher, B.D. 2007. Lippincott's Illustrated Reviews: Microbiology. Lippincott Williams and Wilkins, New Delhi/New York 	

	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	1	1
CO2	3	3	3	2	2
CO3	3	3	3	2	2
CO4	2	2	1	2	2
CO5	2	2	3	1	1

c. Mapping of Program Outcomes with Course Outcomes

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	8	8	8	8	8	40
External	12	12	12	12	12	60
Total	17	17	15	17	17	100

e. Mapping Course Outcome with Internal Assessment (40 Marks)

	CO1	CO2	CO3	CO4	CO5
Assignments	2	2	-	-	2
Seminar	-	-	2	2	-
Test	5	5	5	5	5
Attendance	1	1	1	1	1
Total	8	8	8	8	8

f. Mapping Course Outcome with External Assessment (60 Marks)

Category	CO1	CO2	CO3	CO4	CO5	CO6
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2	2
Part - B	0	0	0	0	0	8
(Essay - 10 x 5 = 50 marks)	0	0	0	0	0	
Total	10	10	10	10	10	10

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	and supported	particularly developed or		Not attended	CO1, CO2, CO5

2	Organiza -tion 50%	main idea with	statement of main idea and	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5
---	--------------------------	----------------	----------------------------	---	--------------------	-----------------	---------------------

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	Exceptional knowledge of facts, terms, and concepts	knowledge of facts, terms,	facts, terms,	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	sequences	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

SI. No.	Model Questions	Specification	Level
	Part – A: Objective Type Multiple choice 10 x 1 = 10		
1	 From the following which is true for <i>Heamophilus influenza</i> a) Gram (+), non-spore forming and motile b) Gram (-), non-spore forming and non-motile c) Gram (+), spore forming and non-motile d) Gram (-), non-spore forming and motile 	Recognize	Remember
2	The sub-terminal spore formation caused by the <i>Clostridium</i> (sp) <i>a) Clostridium tetani b) Clostridium Perfringens c) Clostridium bifermentans Clostridium tertium</i>	Recall	Remember
3	 Staphylococcal endotoxins are heat stable a) Yes b) No 	Recognize	Remember
	 A high cell wall content of high-molecular-weight lipids present in this bacterium a) Streptococcus b) Staphylococcus 	Recognize	Remember

	a) Damidomonag		
	c) Pseudomonas d) Mycobacterium		
	The bacterial plasma membrane is composed primarily of	Dagamiza	Remember
5	protein and phospholipid in the ration of a) 3:1 b) 2:2 c) 1:3 d) 3:2	Recognize	Kennennber
	A disease constantly present at some rate of occurrence in a		
6	particular location	Recognize	Remember
	a) Epidemic b) Endemic c) d) out break d)	U	
	disease prevalence		
	A bacterium with the tendency ti attack the stomach lining is		
_	a) Campylobacter	D 11	D 1
7	b) Corynebacterium	Recall	Remember
	c) Helicobacter pylori		
	d) Pseudomonas		
	Although vaccines are available for different diseases the		
	infection still occurs due to		
8	a) Vaccines are too expensive	Recall	Remember
Ũ	b) Unavailability to the public		
	c) Neglected		
	d) All the above		
	Adjuvants are mostly used in		
9	a) Live vaccine c) inactive vaccine	Identify	Remember
	b) Attenuated vaccine d) DNA vaccine		
	The toxin which is stable at 100 ° C for 30 min, resists		
10	hydrolysis by gastric enzymes is	Identify	Remember
10	a) Cytotoxin c) enterotoxin	raentry	rtemenioer
	b) Exotoxin d) all the above		
	PART – B ESSAY Answer		
	The answer should not exceed 200 words $10x 5 = 50$		
	What can I expect if I have an <i>E. coli</i> infection? B)	Describe	Analyze
	Pathogenicity of A. baumannii		5
12	Detail the fecal microbiota and treatment of Diarrhoea	Explain	Understand
		Discuss	
13	What vaccination(s) needed adjuvants and explain	Assess	Skill
	components of Alum.		
	Detail the physiological, biochemical and epidemiological	Describe	Analyse
	characteristics of <i>Pseudomonas aeruginosa</i> .		
	How does the microbiome affect immunity and contribute to	Explain	Understand
	disease?	Discuss	
	Explain: what is the serological diagnosis? and how the host	Assess	Skill
	responds to a microbial infection?		
	Detail the pathogenesis, symptoms and culturing conditions		
17	of following diseases	Asses	Analyse
1	a) Rocky mounted spotted fever	1 10000	2 mary 50
	b) Ehrlichiosis		

Course Code	Course Name	L	Т	Р	Credits
PMB 205	Practical Microbiology V			2	2

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

	Course Outcome	Level
CO 1	To study the normal micro-biota of mouth and skin;	skills
CO 2	Identification and Biochemical tests of gastrointestinal bacterial infection	skills
CO 3	Collection and microbiological examination of sputum for pus cells and bacteria.	analyze
CO 4	Examination of microbial load in various food sources	analyze
CO 5	Milk quality determination and detection of number of bacteria in milk	skill

Units	Content	Hrs.
Ι	Study of normal micro-biota of mouth and skin; isolation, identification and preservation, Identification and Biochemical tests of respiratory tract bacterial pathogen (using avirulent strain of MTCC Culture of – Streptococci/Klebsiella pneumoniae. Identification and Biochemical tests of gastrointestinal bacterial infection (using avirulent strain of MTCC Culture) – Salmonella/Shigella sps. Laboratory examination and identification and biochemical tests of pus (using avirulent strain of MTCC culture) for Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa. Laboratory examination of sputum: Collection and microbiological examination of sputum for pus cells and bacteria. Ziehl-Neelsen staining to detect Mycobacteria (using avirulent strain).	15
П	Examination of microbial load in soft drinks, ice creams, packaged and canned foods. Isolation and identification of food poisoning bacteria from contaminated foods, dairy products. Isolation and identification of food spoilage fungi from foods. Isolation, extraction and detection of aflatoxin from foods. Production and estimation of lactic acid by Lactobacillus sp./ Streptococcus sp. Role of microbes in fermented foods- Bread making, Sauerkraut. Detection of number of bacteria in milk by standard plate count (SPC). Determination of quality of milk sample by methylene blue reduction test. Assessment of water quality by multiple tube fermentation test.	15
	Tasks and Assignments:	
	Each student is required to submit the following:	
	 ✓ Each student should discuss complete details of one of the display techniques. ✓ Students should demonstrate the screening techniques for the effective isolation of normal microbiota from various sources 	

Participate in the subject-oriented quiz.
 Visit industry to learn techniques and advancements.

	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	1	1
CO2	3	3	3	2	2
CO3	3	3	3	2	2
CO4	2	2	1	2	2
CO5	2	2	3	1	1

c. Mapping of Program Outcomes with Course Outcomes

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	10	10	10	10	10	50
External	10	10	10	10	10	50
Total	17	17	15	17	17	100

e. Mapping Course Outcome with Internal Assessment (50 Marks)

	CO1	CO2	CO3	CO4	CO5
Practical	3	3	3	3	3
Seminar	-	-			-
Test	4	4	4	4	4
Attendance	3	3	3	3	3
Total	10	10	10	10	10

f. Mapping Course Outcome with External Assessment (50 Marks)

Category	CO1	CO2	CO3	CO4	CO5	CO6
Part – A	2	2	2	2	2	2
(Objective - 10 x 1 = 10 marks)	2	2	2	2	2	
Part – B	8	8	8	8	8	8
(Essay - 10 x 5 = 50 marks)	0	0	0	0	0	
Total	10	10	10	10	10	10

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	Developed and supported	particularly developed or		Not attended	CO1, CO2, CO5

2	Organiza -tion 50%	main idea with	statement of main idea and	organizational tools are weak or missing	No organization	Not attended	CO1, CO2, CO5
---	--------------------------	----------------	----------------------------	---	--------------------	-----------------	---------------------

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	knowledge of	knowledge of facts, terms,	facts, terms,	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	sequences	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

i. Model Question Paper

Sl. No.	Model Questions	Specification	Level
	Part – A: Demosntration Multiple choice 20 x 2 = 40		
	Identification and Biochemical tests of respiratory tract bacterial pathogen	Recognize	Remember
2	Ziehl-Neelsen staining to detect Mycobacteria	Recognize	Remember
	PART – B Spotter The answer should not exceed 200 words 5 x 2 = 10		
11	Isolation and identification of food spoilage fungi from foods.	Recognize	Analyze
10	Assessment of water quality by multiple tube fermentation test.	Recognize	Analyze

SEMESTER - III

Course Code	Course Name	L	Т	Р	Credits
PMB306	Practical Microbiology VI	0	0	2	2

	Course Outcome	Level
CO 1	Deals with various bioassays and fermentation studies	Understand
CO 2	Deals with isolation of soil microbes and microbial organic waste management techniques	Analyze
CO 3	Deals with DNA isolation techniques, cloning, expression, and PCR.	Skill

a. Course Outcome (CO) On the successful completion of the course, the student will be able to

Units	Content	Hrs.
I	Part 1 Bioassay of nicotinic acid, Production of ethanol by yeast, Isolation of amylase producing microorganisms from soil, Isolation of protease producing microorganisms from soil, Isolation of lipase producing microorganisms from soil, Production and extraction of thuricides, Laboratory production of biofertilizers, Production and quantification of citric acid, Demonstration: Reactor Studies: Batch, fed-batch, and continuous flow reactor analysis and residence time distribution, Demonstration: Down-stream processing lab, Determination of specific growth rate in submerged fermentations, Production of wine from grape juice, Preparation of fermented food: curd, cheese and alcohols, Isolation and characterization of plant growth promoting bacteria.	10
п	Part II Isolation and identification of nitrogen-fixing bacteria from soil, Splash liberation of fungal spores from diseased tissue, Seed health testing by using Standard Blotter Method, Estimation of phenols from healthy and diseased plant tissues, Degradation of cellulose by fungi (Chaetomium), Associative and antagonistic relationships among soil microorganisms, Microbial management of organic wastes, Microbial degradation of oil, Isolation of hydrocarbon and heavy metal tolerant microorganisms, Production and analysis of Polyhydroxy butyrates (PHB).	10
ш	Part III Isolation HMW DNA, DNA cloning and expression in E. coli cells, end repairing and cloning in fosmid/BAC, restriction analysis, polymerase chain reaction-Gradient, RT-PCR (demo), 16S typing, Mega software, Entrez Human genome map viewer.	10
	Practical (Any two)	
	S.No.Apparatus and ToolsConcept1Detection of bacterial pathogens by PCRUnderstanding2Identification of mycorrhizaUnderstanding	
	3 Bacterial growth measurement Understanding	
	Tasks and Assignments:	
	Each student is required to submit the following:	
	✓ Each student should discuss complete details of Production of various compounds from naturally collected yeast.	

✓	Students should demonstrate the isolation and identification of nitrogen-fixing bacteria from soil. Participate in the subject-oriented quiz. Visit industry to learn techniques and advancements.	
Refer	ences:	
Micro	biology, A laboratory manual by James Cappuccino and Natalie Aherman 10 th edition	
Konen	nan's Color atlas and textbook of diagnostic microbiology, 7 th	
	edition by Gary W. Procop, Deirdre L. Church, Geraldine S Hall	
	and William M, Janda	

d Mapping of Program Outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	1	1
CO2	3	3	3	2	2
CO3	3	3	3	2	2
CO4	2	2	1	2	2
CO5	2	2	3	1	1

d. Evaluation Scheme

	C01	CO2	CO3	CO4	CO5	Total
Internal	10	10	10	10	10	50
External	10	10	10	10	10	50
Total	17	17	15	17	17	100

e. Mapping Course Outcome with Internal Assessment (50 Marks)

	CO1	CO2	CO3	CO4	CO5
Practical	3	3	3	3	3
Seminar	-	-			-
Test	4	4	4	4	4
Attendance	3	3	3	3	3
Total	10	10	10	10	10

f. Mapping Course Outcome with External Assessment (50 Marks)

Category	CO1	CO2	CO3	CO4	CO5	CO6
Part – A (Objective - 10 x 1 = 10 marks)	2	2	2	2	2	2
Part – B (Essay - 10 x 5 = 50 marks)	8	8	8	8	8	8
Total	10	10	10	10	10	10

g. Rubric for Assignments

SI. No.	Criteria	100%	75%	50%	25%	0%	Relation to COs
1	Content 50%	Ideas are detailed, well developed, supported with specific evidence & facts and examples	Ideas are detailed, Developed and supported with evidence and facts mostly specific.	particularly developed or		Not attended	CO1, CO2, CO5
2	Organiza -tion 50%	Includes title, introduction, statement of the main idea with illustration and conclusion.	Includes title, introduction, statement of main idea and conclusion.	tools	No organization	Not attended	CO1, CO2, CO5

h. Rubric for Seminar

SI. No	Criteria	100%	75%	50%	25%	0%	Relatio n to COs
1	Understandin g	knowledge of facts, terms,	knowledge of facts, terms,	Considerable knowledge of facts, terms, and concepts	knowledge of facts, terms,	Not Attende d	CO3, CO4
2	50%	a with logical	d with	Communicate	No coherent communicatio n	Not Attende d	CO3, CO4

SI. No.	Model Questions	Specification	Level
	Part – A: Demosntration Multiple choice 20 x 2 = 40		
1	Demonstration of isolation and identification of nitrogen- fixing bacteria from soil.	Recognize	Remember
2	Estimation of phenols from healthy and diseased plant tissues	Recognize	Remember

	PART – B Spotter The answer should not exceed 200 words 5 x 2 = 10		
11	Identify the growth pattern and elaborate it.	Recognize	Analyze
12	Explain DNA cloning and expression in E. coli cells.	Recognize	Analyze