Department of Mathematics School of Mathematics and Computer Sciences

Outcome Based Education Syllabus for Integrated M.Sc. Mathematics (For students of I and III year Int. M. Sc. in 2020-2021)

Central University of Tamil Nadu Thiruvarur - 610005

Department of Mathematics School of Mathematics and Computer Sciences Central University of Tamil Nadu

A. Vision

To be an internationally acclaimed Department of Mathematics for its teaching and research that also caters to the educational and occupational needs of the local community.

B. Mission

- M1 To provide a world class teaching and research infrastructure.
- M2 To promote professional working environment that supports innovative thinking and teamwork.
- M3 To inculcate the art of asking questions, formulating the problem, solving the problem and interpreting the solution for possible applications.

C. Programme Outcomes (PO)

- PO1: Acquire basic knowledge on logic, tools and techniques for formulating problems in to a model.
- PO2: Motivate the students to develop problem solving skills.
- PO3: Ability to work in teams via group discussion and class room interaction.
- PO4: Acquire skills to qualify competitive exams.
- PO5: Enhance skills to develop critical thinking
- PO6: Develop innovative skills, team work, leadership quality and ethical values
- PO7: Students are directed towards lifelong learning through reading course and project

D. PO to Mission Statement Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
M1	1	1	1	1	1	1	1
M2	1	1	1	1	1	1	1
M3	1	1	1	1	1	1	1

E. Programme Specific Outcomes (PSO)

- PSO1: Understand the abstract concepts in Algebra, Analysis and Geometry.
- PSO2: Inculcate critical and analytical thinking to solve problems.
- PSO3: Students are motivated towards inter disciplinary research.
- PSO4: Focus on examinations like CSIR, GATE and NBHM etc through assignments.
- PSO5: Students are encouraged to do research in reputed institutions.
- PSO6: Capable of solving real world problems independently.
- PSO7: Communicate Mathematical concepts efficiently.
- PSO8: Develop programming skills and problem solving skills to study the mathematical concepts effectively

F. PO to PSO Mapping

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
PO1	1	1	0	1	1	0	1	0
PO2	1	1	0	1	1	1	1	1
PO3	0	0	1	1	0	1	1	0
PO4	1	1	0	1	1	0	1	1
PO5	1	1	1	1	1	1	1	1
PO6	0	1	1	1	0	0	1	1
PO7	1	1	1	0	0	1	0	1

G: Course Structure

Semester	Course code	Course title	Туре	Credits
Ι	MAT111	Mathematics I	Core	4
Ι	-	Physics 1*	Core	5
Ι	-	Chemistry 1*	Core	5
Ι	-	English 1*	AECC	3
Ι	-	AECC 1*	AECC	2
II	MAT121	Mathematics II	Core	4
II	-	Physics 2*	Core	5
II	-	Chemistry 2*	Core	5
II	-	English 2*	AECC	3
II	-	AECC 2*	AECC	2
III	MAT211	Mathematics III	Core	4
III	MAT212	Scientific Computing Lab I	Core	2
III	-	Physics 3*	Core	5
III	-	Chemistry 3*	Core	5
III	-	II Language 1*	AECC	3
III	-	AECC 3*	AECC	2
IV	MAT221	Probability and Statistics	Core	4
IV	MAT222	Scientific Computing Lab II	Core	2
IV	-	Physics 4*	Core	5
IV	-	Chemistry 4*	Core	5
IV	-	II Language 2*	AECC	3
IV	-	AECC 4*	AECC	2
V	MAT311	Algebra I	Core/DSE**	4
V	MAT312	Analysis I	Core/DSE**	4
V	MAT313	Ordinary Differential equations	Core/DSE**	4
V	MAT314	Linear Programming	Core/DSE**	4
V	MAT315	Number theory	Core/DSE**	4
VI	MAT321	Algebra II	Core/DSE**	4
VI	MAT322	Elementary Complex Analysis	Core/DSE**	4
VI	MAT323	Basic Graph Theory	Core/DSE**	4
VI	MAT324	Numerical analysis	SEC	3
VI	MAT325	Numerical analysis - Lab	SEC	2

Semester	Course code	Course title	Туре	Credits
VII	MAT411	Analysis II	Core	5
VII	MAT412	Linear Algebra	Core	5
VII	MAT413	Probability theory	Core	5
VII	-	Elective 1*	Elective	4
VII	-	Elective 2*	Elective	4
VIII	MAT421	Measure and Integration	Core	5
VIII	MAT422	Topology	Core	5
VIII	MAT423	Partial Differential Equations	Core	5
VIII	-	Elective 3*	Elective	4
VIII	-	Elective 4*	Elective	4
IX	MAT511	Advanced Complex Analysis	Core	5
IX	-	Elective 5*	Elective	5
IX	MAT51R	Reading course*	Elective	2
X	MAT521	Functional Analysis	Core	5
Х	_	Elective 6*	Elective	5
Χ	MAT52P	Project	Elective	12

*The course titles and course codes will be given based on the choice. **For Int. M.Sc. programme, types of these papers will be Core. For B.Sc. degree by exit option, type of these papers will be mentioned as DSE.

Credits/Programmes	B.Sc.	Int. M.Sc.	Core	Elective	AECC	SEC
Range of credits by CBCS/UGC	Min 120	Min 196	124 - 132	36 - 48	20	4 - 8
Actual credits	121	197	132	40	20	5

List of elective courses.

Sl. No.	Course code	Course title	Credits
1	MAT01E	Computational Mathematics	3+2
2	MAT02E	Mathematical Methods	4 or 5
3	MAT03E	Fluid Dynamics	4 or 5
4	MAT04E	Transformation Groups	4
5	MAT05E	Design & Analysis of Algorithms	4
6	MAT06E	Number Systems	4
7	MAT07E	Nonlinear Programming	4 or 5
8	MAT08E	Introduction to Lie Algebras	4 or 5
9	MAT09E	Algebraic Number Theory	4
10	MAT10E	Non-linear Partial Differential Equations	4 or 5
11	MAT11E	Advanced Partial Differential Equations	5
12	MAT12E	Differential Geometry	4
13	MAT13E	Delay Differential equations	4
14	MAT14E	Foundations of Geometry	4
15	MAT15E	Commutative algebra	5
16	MAT16E	Discrete Mathematics	4 or 5
17	MAT17E	Advanced graph theory	4
18	MAT18E	Hyperbolic Geometry	4 or 5
19	MAT21E	Discrete Dynamical systems	4

Generic electives.

SI.No	Course code	Course title	Credits
1	MAT01G	Python for Sciences	4
2	MAT02G	Game theory	4
3	MAT03G	History of Mathematics	3

H: Evaluation Procedure

Evaluation is based on Internal Assessment and End Semester Examination. The Internal Assessment consists of the following components: Written tests, Assignments, Practical, Project works, Quiz, seminar, open-book tests, viva voce and online tests via platforms Moodle, MOOCs, Google Classroom, etc.,.

	Internal Marks	End Semester Marks	Total
Theory Courses	40	60	100
Lab Courses	60	40	100
Project	60	40	100
Reading Course	40	60	100

Internal Assessment evaluation pattern will differ from course to course for each semester. This will have to be declared to the students at the beginning of each semester.

SEMESTER – I **Course Code: MAT111**

Mathematics I

Course Outcome (CO) On completion of the course the students will be able to

	Course Outcome	Level
CO 1	understand the concept of convergence, limits, eigen values and	Remember
001	eigen vectors.	Understand
CO_2	solve systems of linear equations including Gauss elimination	Apply
	method and rate related problems	Аррту
CO 3	examine the convergence and divergence of sequences and series	Analyza
003	using various tests	Analyze
	find inverse of matrices using determinants and Cayley-Hamilton	
CO 4	theorem, limits of quotient of functions using L'Hospital's rule and	Evoluato
CU 4	limits of convergence sequences, local extremums and Taylor series	Evaluate
	expansions of functions.	
CO 5	investigate the increasing, decreasing, concavity and convexity of	Craata
	functions	Create

Syllabus

Units	Čontent	Hrs.
I	Systems of linear equations, Gauss elimination, and consistency. Subspaces of R^n and their dimensions; matrices, systems of linear equations as matrix equations, row-reduced echelon matrices, row-rank, and using these as tests for linear dependence.	12
п	Inverse of a Matrix. Equivalence of row and column ranks. Equivalence and canonical form. Determinants. Eigenvalues, eigenvectors, and the characteristic equation of a matrix. Cayley-Hamilton theorem and its applications.	12
ш	Limit of a function motivation and examples, L'Hospital's rule, problems on limits, convergent sequences and their properties, bounded, Cauchy, monotonic sequences, convergent series, tests of convergence of series.	12
IV	(Review of differential calculus), related rate problems, implicit differentiation, tangent of a curve (given in parametric form and in implicit form), motion on a straight Line, local extremums, increasing, decreasing Functions.	12
v	Higher order derivatives, Taylor's series expansion of sin x, cos x, e^x , log(1+x), $(1 + x)^m$ (with m is a negative integer or a rational number), Leibnitz rule and its applications to problems of type $e^{ax+b}sin(x)$, $e^{ax+b}cos(x)$, $(ax + b)^n sin(x)$, and $(ax + b)^n cos(x)$, convex and concave functions, curve tracing.	12
	 References: 1. G.B. Thomas and R.L. Finney, Calculus and Analytic Geometry, 9thEdition, Pearson, Noida, 2019. 2. B.S. Grewal, Higher Engineering Mathematics, 42nd edition, Khanna Publisher, 2012. 	

Credit: 4

3. E. Kreyszig, Advanced Engineering Mathematics, 8th Edition, JohnWiley & Sons, Singapore, 2006.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	1
CO2	1	1	0	1	1	0	1	1
CO3	1	1	0	1	1	0	1	1
CO4	1	1	1	1	1	0	1	1
CO5	1	1	1	1	1	0	1	1

Semester II Subject Code: MAT121

Credits: 4

Mathematics II

	Course Outcome	Level
CO 1	understand the concepts of vectors, derivatives and integration	Remember Understand
CO 2	solve problems on vector differentiation and integration in two and three dimensional spaces	Apply
CO 3	examine the extreme values of functions of two variables, solenoidality, irrotationality, conservativeness of a given vector field and verify Gauss, Green's and Stokes theorems	Analyze
CO 4	determine Hessian matrix, area, arc length, surface area and volume of surface of revolution, and evaluate double and triple integrals	Evaluate
CO 5	compile the application of line, surface and volume integrals	Create

	Syllabus					
Units	Content	Hrs.				
Ι	Differentiability, total differential, chain rule. Directional derivative, gradient of a scalar field, geometrical meaning, tangent plane, Hessian matrix, extreme values and saddle point for function of two variables.	12				
Π	Divergence and curl of a vector field, solenoidal field, irrotational field and conservative field, scalar and vector potentials, Laplacian of a scalar field, standard identities involving curl, divergence, gradient and Laplacian operators.	12				
III	(Review of Integral Calculus) Area Under Curves, Applications of integrals to find Area, Arc Length, Surface Area and Volumes of Surface of Revolution, Reduction formulae for powers of trigonometric functions, Differentiation under integral sign by Leibnitz rule, Improper integrals.	12				
IV	Double integrals, Change of order of integration, Double integrals in polar form, Jacobian determinant, Change of variables, Triple integrals in rectangular co-ordinates, Triple integrals in cylindrical and spherical coordinates					
V	ine Integral, Surface integral, Volume Integral. Gauss, Green and Stokes theorems (without proof) and their applications.	12				
	 References: G.B. Thomas and R.L. Finney, Calculus and Analytic Geometry, 9th Edition, Pearson, Noida, 2019. B.S. Grewal, Higher Engineering Mathematics, 42nd edition, Khanna Publisher, 2012. E. Kreyszig, Advanced Engineering Mathematics, 8th Edition, Johnv Wiley & Sons, Singapore, 2006. 					

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	0
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	0
CO4	1	1	0	0	1	1	0	1
CO5	1	1	1	0	1	1	0	1

Semester III Subject Code: MAT211

Mathematics III

Course Outcome (CO) On completion of the course the students will be able to

	Course Outcome	Level				
CO 1	Motivation and understandings towards the origin of ODE's, properties	Remember				
COT	and solutions of first order ordinary differential equations	Understand				
CON	Applications of various methods in finding the solutions spaces of	Ample				
02	ODE's, PDE's and Laplace transforms.					
CO 3	Analysis of the properties of the ODE's, PDE's and Laplace	Analyza				
003	transforms.	Analyze				
CO 4	Obtains the solutions of first and 2 nd order ODE's, PDE's using the	Eveluate				
CO 4	existing methods in the syllabus.	Evaluate				
	For the given differential equations, discussion about the types of	Create				
05	solutions and the application of Laplace transform method.	Cleate				

Syllabus						
Units	Content	Hrs				
I	Motivation for ODE with some simple models, Definition of Linearity, classifications of ODEs: Linear and nonlinear, homogeneous and non-homogeneous, order and degree. Notion of solution: General, particular and singular solution. First order ODE: Separable equations, Exact equations: Integrating factors and Homogeneous.	12				
II	Homogeneous: Solution space, Linear dependence & independence and their Wronskian, solution of constant coefficient equation. Non-homogeneous: Complimentary solution and particular solutions, method of variation of parameters.					
	Laplace transform, Laplace transforms of standard functions, properties of					
III	Laplace transforms, inverse Laplace transform and its properties.	12				
IV	Applications of Laplace transform in solving linear ODE with constant coefficients, system of linear ODE's with constant coefficients.	12				
	Introduction, Formation of PDEs, Methods for First order PDEs: Lagrange's					
V	method and Charpit's Method. Linear PDEs with constant coefficients, Classification of second order PDEs.	12				
	References					
	1. E. Kreyszig Advanced Engineering Mathematics, 9th Edition, John Wiley and Sons, Singapore, 2006.					
	2. K.A. Stroud, Advanced Engineering Mathematics, Fourth Edition, Palgrave London 2003					
	3. M. Braun, Differential Equations and their applications, Fourth					
	 I.N. Sneddon, Elements of Partial Differential Equations, Dover, 					
	 T. Myint-U. L. Debnath, Linear Partial Differential Equations for Scientists and Engineers, Birkhäuser, Boston, 2014. 					

Credits: 4

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	0
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	0
CO4	1	1	0	0	1	1	0	1
CO5	1	1	1	0	1	1	0	1

Course Code: MAT212

Scientific Computing Lab I

Credit: 2

	Course Outcome	Level			
CO 1	To comfortably use Linux command line, VI editor and necessary basic commands of Linux.	Remember & Understand			
CO 2	D2 To use Python shell as a calculator and to use standard Mathematical functions available in Python.				
CO 3	To write basic Python programs and functions.	Analyze			
CO 4	To use lists, loops in a program to iterate some well known Numerical methods in Mathematics.	Evaluate			
CO 5	To format the output and use functions from the Numpy and Scipy libraries.	Create			

	Syllabus	
Unit s	Content	Hrs
Ι	(Review)Linux commands; File management and permissions; Using VI editor; Introducing a programming language, syntax, basic tools, simple programmes, etc.	12
Π	Basic Tools; First Program file; Handling complex numbers; Functions and loops; Standard math functions; Conditionals; Python keywords and function names; Defining Names;	12
III	Lists in Python; Defining and accessing lists; Loops with lists; Range function; for loop with lists for sorting; Built-in sort functions; else class in loops; slicing lists; lists as stacks; using lists as queues; new lists from old;	12
IV	Data types; Numeric Types; Tuples; Accepting tuple inputs; sorting iterables; the lambda function; Sets; Dictionaries;	12
V	 Input and output; Output formatting; Format specifiers; align, sign, width, precision, type; File operations; Functions from Numpy and Scipy libraries. Some mathematical problems for practice and is not limited to the following: (a) Finding GCD of two or more integers; (b) Primality checking; Finding primes upto a given integer; (c)Plottingcurves; (d)Area of a triangle; (e) Angle between vectors; (f) Convert a number in decimal to a given base <i>n</i>. (g) Transpose of a matrix; Product of two matrices; (h) Finding the mean; median; mode; standard deviation etc., of a given data; 	12
	References: 1. M. Lutz and D. Ascher, Learning Python: Powerful Object-Oriented	

	Program- ming, 4th edition, O'Reilly, 2009.	
2.	. R. Thareja, Python Programming: Using Problem Solving Approach,	
	Oxford HED, 2017.	
3.	. H.P. Langtangen, A Primer on Scientific Programming with Python,	
	Springer- Verlag, Berlin, 2016.	
4.	. Y. Zhang, An Introduction to Python and Computer Programming,	
	Springer, Singapore, 2015.	
5.	. K.V.Namboothiri, Python for Mathematics Students, Version2.1,	
	March2013.	
	(https://drive.google.com/le/d/0B27RbnD0q6rgZk43akQ0MmRXNG8/	
	view)	

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	0	1	1	0	1	1	0	1
CO2	0	1	1	0	1	1	0	1
CO3	0	1	1	0	1	1	0	1
CO4	0	1	1	0	1	1	0	1
CO5	0	1	1	0	1	1	0	1

Semester IV **Course Code: MAT221**

Probability & Statistics

Course Outcome (CO) On completion of the course the students will be able to

	Course Outcome	Level
CO 1	To quantify the uncertainness in various real life situations using the knowledge of probability.	Remember & Understand
CO 2	To model and predict various events as discrete random variables.	Apply
CO 3	To model and predict various events as continuous random variables.	Analyze
CO 4	To estimate the basic statistics in a practical situation and to give a conclusive inference from the available resources.	Evaluate
CO 5	To test different hypothesis and to establish the validity of the proposed hypothesis with statistical evidence.	Create

	Syllabus				
Units	Content	Hrs.			
Ι	Probability, Random experiment; Sample point, Event and Probability; Rules of Probability; Conditional Probability; Independence of Events; Bayes' Rule. Applications.	12			
Π	Discrete Random variables Definition; sum and linear composite of random variables; Mean and variance; Bernoulli, Binomial, geometric and negative binomial distributions; hypergeometric distribution; Poisson distribution. Applications.	12			
III	Continuous Random Variables. Definition; Uniform and exponential distributions; Normal distribution and its properties; Standard normal distribution; Transformation from a general normal distribution to standard normal; Checking for normality of data; Applications.	12			
IV	Point Estimation and Confidence Intervals Point estimation of the population mean and standard deviation of a normal distribution; Estimation of proportion; Confidence intervals; Large sample methods; Applications				
V	Hypothesis Testing Hypothesis - simple and composite; Null and alternative; Test of Hypothesis; Type I and Type II errors; Level and power of a test; p-value; Tests for mean and standard deviation; Test for proportion; one tail or two tails. Applications.	12			
	 References: A.D. Aczel, and J. Sounderpandian Complete Business Statistics, 7th Edition, McGraw-Hill, Irwin, 2008. S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistics (A Modern Approach), 10th Edition, Sultan Chand and Sons, 2000. M.L. Samuels and J.A. Witmer, Statistics for the life sciences, 3rd 				

Credit: 4

Edition, Prentice Hall, 2003.

- 5. H. E. Van Emden, Statistics for terrified Biologists, Blackwell Publishing, 2008.
- 6. 5. R. Barlow, Statistics A guide to the use of statistical methods in the Physical Sciences, Wiley, 1999.

Mapping of Program Outcomes Course Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	0
CO2	1	1	1	1	1	1	1	0
CO3	1	1	1	1	1	1	1	0
CO4	1	1	1	1	1	1	1	0
CO5	1	1	1	1	1	1	1	0

Course Code: MAT222

Credit: 2

Scientific Computing Lab II

	Course Outcome	Level
CO 1	To use Python and SageMath's built-in commands/functions in a Jupyter notebook.	Remember & Understand
CO 2	To define functions and run several numerical methods in SageMath.	Apply
CO 3	To create and manipulate data structures like lists and dictionaries in SageMath.	Analyze
CO 4	To visualize graphs and other objects in two and three dimensions in SageMath.	Evaluate
CO 5	To perform basic statistical analysis of a given data using SageMath.	Create

	Syllabus	
Units	Content	Hrs.
I	Review of Python commands, Python variables, Symbolic Variables, First computations; Elementary functions and Usual constants; Auto completion; Simple plotting. Symbolic Expressions and Simplification; Transforming expressions; Usual Mathematical functions; Assumptions and pitfalls; Explicit solving of Equations; Equation with no explicit solution; Sums; Limits; Sequences; Power Series Expansions; Series; Derivatives; Partial Derivatives; Integrals; Solving linear systems; Vector Computations; Matrix Computations; Reduction of a Square Matrix	12
II	Programming with Sage; Python language keywords; Sage Keywords; Special symbols in Sage and their uses; Function Calls; Algorithms - Loops; Approximation of Sequence Limits; Conditionals; Procedures and functions; Iterative and recursive methods; Input and Output	12
III	Lists and Other Data Structures; List creation and access; Global list operations; Main methods on lists; Examples of list manipulations; Character Strings; Shared or Duplicated Data Structures; Mutable and Immutable Data Structures; Finite sets; Dictionaries;	12
IV	2D Graphics Graphical representation of a function; Parametric Curve; Curves in Polar Coordinates; Curve Defined by an implicit function; Data Plot; Displaying solutions of differential equations; Evolute of a curve; 3D Graphics	12
V	Statistics with Sagemath: Basic functions random, mean, median, mode, moving average, std, variance; C Int Stats - stats.IntList, min, max, plot, histogram, product, sum; Distributions - norm, uniform, expon, bernoulli, poisson; Statistical functions - stats.gmean, stats.hmean, stats.skew, stats.histogram2, stats.kurtosis, stats.linregress; Statistical model - linear fit - stats.glm	12
	References: 1. P. Zimmermann et.al., Mathematical Computation with Sage,	

	SIAM, Philadelphia, 2018.
	(http://sagebook.gforge.inria.fr/english.html)
2	. R. A. Mezei, An Introduction to SAGE Programming: With
	Applications to SAGE Interacts for Numerical Methods, John
	Wiley & Sons, 2015.
3	. G. A. Anastassiou, R. A. Mezei, Numerical Analysis Using
	Sage, Springer, 2015.
4	. R. A. Beezer, A First Course in Linear Algebra, University Press
	of Florida, 2009.
6	A. Kumar & S. G. Lee, Linear Algebra with Sage, Kyobo
	Books,2015. (http://matrix.skku.ac.kr/2015-Album/Big-Book-
	LinearAlgebra-Eng-2015.pdf)
7	https://docs.scipy.org/doc/scipy/reference/stats.html

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	0	1	1	0	1	1	0	1
CO2	0	1	1	0	1	1	0	1
CO3	0	1	1	0	1	1	0	1
CO4	0	1	1	0	1	1	0	1
CO5	0	1	1	0	1	1	0	1

SEMESTER – V **Course Code: MAT311**

Algebra I

	Course Outcome	Level
CO 1	understand the basic concept groups and subgroups and rings, integral domain, fields	Remember & Understand
CO 2	solve problems using properties of groups and rings	Apply
CO 3	examine the converse part of Lagrange's Theorem and characterization of fields	Analyze
CO 4	find the irreducible polynomial over the field of rational numbers and given an ideal is maximal or not in a commutative ring.	Evaluate
CO 5	investigate the given natural number can be written as the product of prime factors (unique up to isomorphism)	Create

Syllabus					
Units	Content	Hrs.			
Ι	Groups: definition and examples: finite, infinite, abelian, cyclic groups; Subgroups: existence of smallest subgroups of a group G containing a subset $S \subset G$;order of an element; Cosets of subgroups; Lagrange's theorem	12			
II	Normal subgroups - properties, the subgroup of the form HK and O(HK) - quotient groups, homomorphisms of groups, kernel, image, fundamental theorem f homomorphism	12			
III	Automorphisms, Cayley's theorem, permutation groups	12			
IV	Rings, commutative ring, integral domain, division ring, field (definitions), finiteintegral domain is a field, ring homomorphism, ideals, quotient rings,maximalideals & prime ideals and their characterizations, quotient field of an integraldomain.	12			
V	Euclidean rings: division algorithm, GCD and unique factorization theorem ina Euclidean ring, Principal Ideal domain and Unique factorization domain,Polynomial rings.	12			
	 References: I.N. Herstein, Topics in Algebra, 2nd Edition, John-Wiley & Sons, 1975. J.B. Fraleigh, A First course in Abstract Algebra, 7th edition, Pearson Education, 2003. D.S. Dummit and R.M. Foote, Abstract Algebra, Third edition, Wiley, 2004. M. Artin, Algebra, Prentice-Hall of India, 1994. C. Lanski, Concepts in Abstract Algebra, American Math. Society, Indian Editon, by Universities Press, 2010. E. Kreyszig, Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, Singapore, 2006. 				

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	0
CO2	1	1	1	1	1	0	1	0
CO3	0	1	1	1	0	0	1	0
CO4	1	0	1	1	0	0	0	0
CO5	1	0	1	1	0	1	0	0

Course Code: MAT312

Analysis I

	Course Outcome	Level
CO 1	explain the concepts of infimum, supremum and metric spaces	Remember & Understand
CO 2	demonstrate the convergence of series and power series using various tests	Apply
CO 3	analyze the topological properties of continuous functions	Analyze
CO 4	determine the interior point, limit point, closure of subsets of various metric spaces and also the limits of functions, sequences and subsequences	Evaluate
CO 5	construct functions that have various combination of the properties continuity, uniform continuity and differentiability	Create

	Syllabus	
Units	Content	Hrs.
I	Ordered set, ordered field, infimum and supremum, least upper bound property, Archimedian property in R , Q is dense in R , existence of n^{th} root of unity.	12
п	Metric space, interior point, limit point, open set, closed set, interior, closure, perfect set, Cantor set, compact set, Bolzano's theorem, Heine Borel theorem, connected set, characterization of connected subsets of R .	12
Ш	Subsequential limits, limit infimum and limit supremum, and their properties, convergent series, examples, series of non-negative terms, the number <i>e</i> , Root test and ratio test, power series, summation by parts, absolute convergence, addition and multiplication of series, rearrangements of series.	12
IV	Limits functions between metric spaces, continuous functions, uniform continuous functions, examples of continuous but not uniformly continuous functions, continuity and compactness, continuity and connectedness, discontinuities, monotone functions, infinite limits and limit at infinity.	12
V	Differentiable functions, local extremums, mean-value theorems, continuity of derivatives, L'Hospital's rule, Derivatives of higher order and Taylor's theorem, derivatives of vector valued functions.	12
	 References: W. Rudin, Principles of Mathematical Analysis, Wiley International Edition, 1985. T. Apostol, Mathematical Analysis, 2nd Edition, Narosa Publishing House, 1985. R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, 3rd Edition, Wiley International Student edition, 2001. 	

4.	A. Kumar, S.Kumaresan, A Basic Course in Real Analysis, CRC Press, 2014.
5.	K.A. Ross, Elementary Analysis: The theory of Calculus,
	Springer International Edition, Indian Reprint, New Delhi, 2004.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	0	1	1	0	1	1
CO2	1	1	1	1	0	0	1	1
CO3	1	1	1	1	1	0	1	1
CO4	1	1	0	1	1	1	1	1
CO5	1	1	0	1	1	0	1	1

Subject Code: MAT313

Ordinary Differential Equations

Credits: 4

	Course Outcome	Level
CO 1	recognize the relation between linear algebra, analysis and	Remember
COT	differential equations	Understand
CO 2	Apply various methods to solve ordinary differential equations	Apply
CO 3	analyze the qualitative properties of solutions of differential equations	Analyze
CO 4	Evaluate the solutions using separation of variables and Fourier series	Evaluate
CO 5	Develop a method to distinguish singular and ordinary points in the higher order ordinary differential equations	Create

	Syllabus						
Units	Content	Hrs.					
Ι	First order differential equations: Introduction, Separable equations, Exact equations: Integrating factors, Orthogonal trajectories, Existence and uniqueness theorem: Picard iteration.	12					
П	Second order differential equations: Linear equations with constant coefficients, Non-homogeneous equations, Method of variation of parameters, Method of judicious guessing, Series solution: Singular points, regular singular points; the method of Frobenius, Equal roots, and roots differing by an integer. The method of Laplace transforms, properties of Laplace transforms, Dirac delta function, convolution integral, Higher order equations.	12					
ш	System of differential equations: The eigenvalue-eigenvector method of finding solutions, Complex roots, Equal roots, Fundamental matrix solutions, the non-homogeneous system of equations: Method of variation of parameters, solving systems by Laplace transforms.	12					
IV	Qualitative theory: Stability of linear system of ODEs, Stability of equilibrium solutions, qualitative properties of orbits, Phase portraits of linear systems.	12					
V	Separation of variables and Fourier series method: Sturm-Liouville problems.Fourier series, separation of variables, Heat, wave and Laplace equation.	12					
	 References: M. Braun, Differential Equations and their applications, Fourth Edition, Springer, 1993. S.L. Ross, Differential Equation, Fourth Edition, JohnWiley& Sons, 1984. A.K. Nandakumaran, P.S. Datti and R.K. George, Ordinary Differential Equations: Principles and Applications, Cambridge University Press, 2017. T.Myint-U, Ordinary Differential Equations, Elsevier, North-Holland, 1978 						

5.	G.F. Simmons & S.G. Krantz, Differential Equations: Theory,
	Technique, and Practice, TataMc-Graw Hill, 2012.
6.	E.A. Coddington, An Introduction to Ordinary Differential
	Equations, Dover, 1961.
7.	L. Perko, Differential Equations and Dynamical Systems, Third
	Edition, Springer, 2006.
8.	M.W. Hirsch, S. Smale, R.L. Devaney, Differential Equations,
	Dynamical Systems, and an Introduction to Chaos, Third edition,
	Academic Press, 2013.

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8+
CO1	1	0	1	1	1	0	1	0
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1

Subject Code: MAT314

Linear Programming

Credits: 4

	Course Outcome	Level			
CO 1	Understand the history, properties and principles of operations	Remember			
	research and linear programming.	Understand			
CO 2	Improve the problems solving skills related to the scientific	Apply			
02	methods of Operations Research.	Appry			
CO 3	learn the modeling and solutions of linear programming problem	Analyze			
CO 4	Model the assignment and transportation problems and their	Evoluete			
CO 4	methods of solutions.	Evaluate			
CO 5	model the real life sequencing problems, theoretical models and	Create			
05	their solutions	Create			

Syllabus					
Units	Content	Hrs			
Ι	The Linear programming problem. Problem formulation Graphical Method-Definitions of bounded, unbounded and optimal solutions, Linear programming in matrix notation. Definitions of Basic, non-basic variables - basic solutions-slack variables, surplus variables and optimal solution, Simplex method of solution of a linear programming problem, Big M-technique.	12			
II	Two phase simplex method. Degeneracy and Cycling. Revised Simplex Method, Duality Theory Formulation of Dual Problem. Duality theorems. Primal Dual Method and Dual Simplex Method. Sensitivity Analysis.	12			
III	Balanced and unbalanced Transportation problems. Feasible solution- Basic feasible solution - Optimum solution - degeneracy in a Transportation problem Mathematical formulation - North West Corner rule - Vogell's approximation method Method of Matrix minima - algorithm of Optimality test.	12			
IV	Balanced and unbalanced assignment problems -restrictions on assignment problem - Mathematical formulation -formulation and solution of an assignment problem (Hungarian method) - degeneracy in an assignment problem.	12			
V	Sequencing problem-n jobs through 2 machines-n jobs through 3 machines -two jobs through m machines - n jobs through m machines. Definition of network, event, activity, critical path, total float and free float - difference between CPM and PERT - Problems.	12			
	 References: 1. K. Swarup, P.K. Gupta, Man Mohan, Operations Research, 9th edition, Sultan Chand & Sons, Chennai, 2001. 2. S.I. Gauss, Linear Programming, Second Edition, McGraw-Hill Book Company, New York, 1964. 3. A. Ravindran, D.T. Phillips, and J.J. Solberg, Operation research: Principles and Practice, Second Edition, John Wiley & Sons, 				

1987.	
4. F.S. Hillier and G.J. Lieberman, Introduction to Operations	
Research, McGrawHill, 8th Edition, 2001.	

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	1
CO2	1	1	1	1	1	0	1	0
CO3	1	1	1	1	0	1	1	0
CO4	1	1	0	0	1	1	0	1
CO5	1	1	1	0	1	1	0	1

Subject Code: MAT315

Number Theory

Credits: 4

	Course outcome	Level
CO 1	Understand the concepts of divisibility of integers, fundamental	Remember
	theorem of arithmetic.	Understand
CO 2	Apply the notion of congruence, and its properties.	Apply
CO 3	Examine the Dirichlet product of two arithmetic functions, Bell	Analyze
	series and their properties.	
CO 4	Solve problems on number theory.	Evaluate
CO 5	Find the properties of Euler's totient function, Mobius function,	Create
	Mangoldt function, Liouville's function, multiplicative functions,	
	and completely multiplicative functions.	

	Syllabus	
Units	Content	Hrs.
I	Divisibility, greatest common divisor and its properties, Euclidean algorithm, primes, Unique factorization theorem. Mobius function μ , and Euler's totient function ϕ , relation between μ and ϕ , product formula for ϕ , properties of ϕ .	12
п	Dirichlet product of arithmetical functions, Dirichlet inverses, and Mobius inversion formula, Mangoldt function and its properties, multiplicative functions and Dirichlet product, inverse of completely multiplicative function.	12
ш	Liouville's function $\lambda(n)$, divisor functions $d_a(n)$, Generalized convolution, Generalized Mobius inversion formula, Bell series of arithmetic function, Bell series and Dirichlet product, Derivative of arithmetic function, Selberg identity	12
IV	Definition and basic properties of congruences, residue classes and complete residue system, linear congruences, reduced residue systems, Euler-Fermat theorem, Little Fermat theorem, Polynomial congruence modulo <i>p</i> , Lagrange's theorem, Applications of Lagrange's theorem, Wilson's theorem, Wolstenholme's theorem	12
V	Simultaneous linear congruences, Chinese remainder theorem, Applications of Chinese remainder theorem, polynomial congruences with prime power moduli, Principle of cross classification and its applications.	12
	 References. T. M. Apostal, Analytic Number Theory, Springer Verlag, New York, 1976. I. Niven, H.S. Zukerman, H.L. Montgomery, An Introduction to Theory of Numbers, Fifth Edition, John Wiley & Sons inc., New York, 1991. D. M Burton, Elementary Number Theory, Sixth Edition, McGraw-Hill, NewYork, 2007. 	

4. S.G. Telang, Number Theory, Tata McGraw-Hill, 2003

PSO1 PSO2 PSO3 CO/PSO PSO4 PSO5 PSO6 PSO7 PSO8 CO1 CO2 **CO3 CO4** CO5

Semester VI Subject Code: MAT321

Credits: 4

Algebra II

Course Outcome (CO) On completion of the course the students will be able to

	Course Outcome	Level
CO 1	have a thorough introduction to the subject	Understand
CO 2	appreciate Sylow's theorems and its applications	Apply
CO 3	solve problems on conjugacy classes, Sylow's theory, field extensions and solvable groups	Analyze
CO 4	Find the dimension of the constructed extension fields	Evaluate
CO 5	have a detailed knowledge on Galois theory	Create

	Syllabus								
Units	Content	Hrs.							
Ι	Conjugacy classes, class equations, Cauchy's theorem for abelian groups, Sylow's theorem for abelian groups, Cauchy's theorem, number of conjugacy classes in S n , conjugate of a subgroup.								
II	Sylow's theorem, three parts of Sylow's theorem, applications of Sylow' theorem, Structure theorem for finite abelian groups (without proof).								
III	Fields, Field extensions, finite extension, algebraic extension, roots of polynomials, splitting field.	12							
IV	More about roots, simple extension, splitting field of a polynomial, elements of Galois theory, Galois group, fixed field, theorem on symmetric polynomials, normal extension								
V	Fundamental theorem of Galois theory, Solvable group, solvable by radicals, Abel's theorem.	12							
	 References: I.N. Herstein, Topics in Algebra, 2nd Edition, John-Wiley & Sons, 1975. D.S. Dummit and R.M. Foote, Abstract Algebra, Third edition, Wiley, 2004. N. Jacobson, Basic Algebra I, Second Edition, Dover, 2009. M. Artin, Algebra, Prentice Hall India, 1996. J. Rotman, Galois Theory, Springer, 1998. 								

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	0	1	0	0	0	0
CO2	1	1	0	1	0	0	0	0
CO3	1	1	0	1	0	0	0	0
CO4	1	1	0	1	0	0	0	0
CO5	1	1	0	1	0	0	0	0

Subject Code: MAT322

Elementary complex analysis

Credits: 4

	Course outcome	Level
CO 1	learn and understand the basics of analytic functions.	Remember
		Understand
CO 2	solve problems using Cauchy's integral formula and Cauchy's	Apply
	residue theorem.	
CO 3	check the analyticity of a given function, to apply C-R equations to	Analyze
	find the harmonic conjugate, to find the radius of convergence of a	
	power series.	
CO 4	compute Laurent series expansion and classify the types of	
	singularities, the number of zeroes of a polynomial in an annulus	Evaluate
	with centre zero.	
CO 5	find a linear fractional transform with a given values at three	Create
	specific points, cross ratios, and to check if the given three points	
	are on a line or a circle.	

Syllabus					
Units	Content	Hrs.			
I	(Quick Review: Complex numbers and geometrical representations - Cauchy-Schwarz Inequality and Schwarz's inequality - principal argument of a complex number -nth root of a complex number) - Sequences and series of complex numbers, limit and continuity of complex valued functions of a complex variable, Extended complex numbers and stereographic projection.	12			
II	Complex and partial differentiability - Cauchy-Riemann equations – Harmonic function - Harmonic conjugate - Problems on finding harmonic conjugates, finding analytic functions from a given harmonic function as its real(or imaginary) part.	12			
III	Radius of convergence of a Power series, differentiability and uniqueness of power series -problems on finding radius convergence of power series - Polynomial and rational functions, Lucas' theorem, existence of partial fraction expansion of rational functions - Linear fractional transforms / Mobius transforms - Mobius transform maps circles and lines to circles and lines - Cross ratios - Symmetric points with respect to circle or straight line.	12			
IV	Piece-wise smooth curve - Line Integrals and their properties - Cauchy's theorem (without proof)- Cauchy's integral formula - Evaluation of integrals using Cauchy's integral formula (problems only), Types of singularities, characterization of removable singularity - Taylor's theorem - Laurent series (without proof)- Zeros, poles and singularities-problems on expanding Laurent series - characterization of singularities using Laurent series.	12			
V	Residue definition -Problems on finding residues of functions at isolated singularities - Cauchy's residue theorem (without proof) - Evaluation of integrals using Cauchy's residue theorem- Evaluation of real integrals (problems only) - Evaluating number of zeroes of polynomials using Rouche's theorem.	12			

Refer	ences
1.	J.W. Brown and R.V. Churchill, Complex Variable and
	Applications, McGraw Hill, 2008.
2.	J.B. Conway, Functions of one complex variable, 2nd edition,
	Springer-Verlag, 1978.
3.	S. Ponnusamy, Foundations of Complex Analysis, 2nd edition,
	Narosa
	Publishing House, 2005.
4.	L.V. Ahlfors, Complex Analysis, 2nd edition, McGraw-Hill, New
	York, 1966.

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	1	1	0	0	1	0
CO2	1	1	0	1	1	1	1	1
CO3	1	1	1	1	0	1	1	1
CO4	1	1	0	1	0	0	1	1
CO5	1	1	1	1	1	1	1	1

Course Code: MAT323

Basic Graph Theory

Course Outcome (CO) On completion of the course the students will be able to

	Course Outcome	Level
CO 1	understand the concept of graphs, subgraphs and graph isomorphisms	Remember & Understand
CO 2	demonstrate Cayleys's formula to count the spanning trees of K_n	Apply
CO 3	distinguish between connectivity and edge connectivity, between vertex coloring and edge coloring	Analyze
CO 4	determineEulerian graphs, planar graphs and chromatic polynomial of a given graph	Evaluate
CO 5	translate real-world problems in to graph theoretic models	Create

Syllabus

Units	Content	Hrs.
Ι	Graphs, subgraphs, isomorphism of graphs, degrees of vertices, paths and connectedness, trees, counting the number of spanning trees and Cayley's Formula.	12
II	Vertex cuts, edge cuts, connectivity, edge-connectivity, blocks and Eulerian graphs.	12
ш	Hamilton graphs - Necessary conditions - Dirac's theorem - closure of a graph - a criterion for Hamilton graphs using closure of a graph and Chvatal's theorem.	12
IV	Edge colourings, vertex colourings, critical graph, properties of critical graphs and chromatic polynomials.	12
V	Planar and nonplanar graphs, Euler's Formula and its consequences, K_n and $K_{3,3}$ are Nonplanar graphs, dual of a plane graph, The Four Color Theorem (without proof) and the Heawood Five-Color Theorem and Kuratowski's Theorem (without proof).	12
	 References: 1. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, 1982. 2. G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, Fifth Edition, CRC press, 2011. 3. D.B. West, Introduction to Graph Theory, Second Edition, PHI Learning Private Ltd, New Delhi, 2011. 4. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Second Edition, Springer, 2012. 	

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	0	1	1	1	1
CO2	1	1	0	0	1	1	1	1
CO3	1	1	1	0	1	1	1	1
CO4	1	1	0	0	1	1	1	1
CO5	1	1	1	0	1	1	1	1

Subject Code: MAT324

Numerical Analysis

Credits: 3

	Course Outcome	Level
CO 1	demonstrate the theory about polynomials and accuracy about numerical methods.	Remember Understand
CO 2	solve algebraic and transcendental equations and study the rate of convergence	Apply
CO 3	Analyze the properties about polynomials to develop methods to perform integration and differentiations.	Analyze
CO 4	Evaluate numerically the approximate solution of ordinary differential equations	Evaluate
CO 5	formulate numerical procedure when real world problems are modelled by the system and understand how the iteration gives approximate solution to the system.	Create

	Syllabus	
Units	Content	Hrs.
Ι	Algebraic and transcendental equations: Bisection method, Iteration method, Regula-Falsi method, Secant method, Newton-Raphson's method, Error analysis, Rate of convergence.	12
II	System of Equations: Linear system (Direct methods): Gauss elimination, Pivoting strategies, Vector and matrix norms, Error estimates and condition number, LU decomposition. Linear system (Iterative methods): Gauss- Jacobi and Gauss-Seidel - Convergence analysis; Eigenvalue problem: Power method – Jacobi for a real symmetric matrix.	12
ш	Interpolation: Lagrange's interpolation - Error analysis - Newton's divided differences - Newton's finite difference interpolation - Optimal points for interpolation - Piecewise polynomial Interpolation: Piecewise linear and Spline interpolation	12
IV	Numerical differentiation and Integration: Numerical differentiation based on interpolation, finite differences. Numerical integration: Newton Cotes formulae, Gaussian quadrature, Trapezoidal and Simpson's rules, Error analysis. Quadrature rules for Multiple integrals.	12
V	Ordinary Differential Equations: Single-Step methods: Euler's method and Modified Euler's method, Taylor series method - Runge-Kutta method of fourth order -Multistep methods: Adams-Bashforth -Moulton methods - Stability analysis- Boundary value problems: Finite Difference method.	12
	 References: 1. K.E. Atkinson, An Introduction to Numerical Analysis, Wiley, 1989 2. R.L. Burden, J.D. Faires, Numerical Analysis, 9th Edition, Cengage Learning, 2011. 3. D. Kincaid and W.Chenney, Numerical Analysis: Mathematics of Scientific Computing, Brooks/Cole Pub. 2nd Edition, 2002. 4. G.M. Phillips and P.J. Taylor, Theory and Applications of Numerical Analysis, 2nd Edition, Elsevier, New Delhi, 2006. 	

5. A. Quarteroni, F. Saleri and P. Gervasio, Scientific computing with	
MATLAB and Octave, Springer, 2006.	
6. S.D. Conte, and C. de Boor, Elementary Numerical Analysis, Third	
Edition, McGraw-Hill Book Company, 1983.	
7. B. Bradie., A Friendly Introduction to Numerical Analysis, 1st	
Edition, Pearson Education, New Delhi, 2007.	

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	1	1	0	0	1	1
CO2	1	1	1	1	0	1	1	1
CO3	1	1	1	1	0	1	1	1
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1

Subject Code: MAT325

Numerical Analysis Lab

Credits: 2

	Course Outcome	Level	
CO 1	Remember program for simple arithmetic operations with scalars,	Remember	
COT	vectors and matrices.	Understand	
CO 2	implement computer program to solve algebraic and transcendental	Apply	
	equations	Арргу	
CO 3	Test the problem by producing two-dimensional and three-	Analuza	
003	dimensional plots	Allalyze	
CO 4	Select computer algorithm to solve differential equations	Evaluate	
	develop a computer algorithm to analyze the consistency, stability		
CO 5	and convergence of a numerical methods.	Create	

	Syllabus	
Units	Content	Hrs.
Ι	 Laboratory Assignments (not limited to): To find the roots of the Algebraic and Transcendental equations using Bisection method, Regula-Falsi method, Newton-Raphson method, Secant method and Iterative method To solve the system of linear equations using Gauss elimination method, Gauss Jacobi method, Gauss-Seidal method and Gauss Jordan method To determine the Eigen values and Eigen vectors of a Square matrix. To find the largest eigenvalue of a matrix by power method. To implement Numerical Integration using Simpson 1/3 rule. To implement Numerical Integration Simpson 3/8 rule To implement Newton's Forward/Backward Interpolation formula To implement Newton's Divided Difference formula To implement Langrange's Interpolation formula To find numerical solution of ordinary differential equations by Euler's method, Runge-Kutta method and Adams-Bashforth method 	45
	References: 1. K.E. Atkinson, An Introduction to Numerical Analysis, Wiley,	
	1989 2 R L Burden I D Faires Numerical Analysis 9th Edition Cengage	
	Learning, 2011.	
	3. D. Kincaid and W. Chenney, Numerical Analysis: Mathematics of Scientific Computing, Procks/Cole Pub. 2nd Edition, 2002	
	4. G.M. Phillips and P.J. Taylor, Theory and Applications of	
	Numerical Analysis, 2nd Edition, Elsevier, New Delhi, 2006.	

-		
	5. A. Quarteroni, F. Saleri and P. Gervasio, Scientific computing with	
	MATLAB and Octave, Springer, 2006.	
	6. S.D. Conte, and C. de Boor, Elementary Numerical Analysis, Third	
	Edition, McGraw-Hill Book Company, 1983.	
	7. B. Bradie., A Friendly Introduction to Numerical Analysis, 1st	
	Edition, Pearson Education, New Delhi, 2007.	

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	0	1	0	0	1	1
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1
Semester VII

Subject Code: MAT411

Credits: 5

Analysis II

Course Outcome (CO) On completion of the course the students will be able to

	Course outcome	Level
CO 1	understand the concepts of Riemann-Stieltjes integrals, and their	Remember
	properties.	Understand
CO 2	solve problems using the Gauss, Stokes, and Divergence theorems	Apply
CO 3	examine the relations among the partial derivatives and total	Analyze
	derivative, interchanging the order of the derivatives, interchanging	
	the order of integrations.	
	discuss the proofs of Green's theorem, Stoke's theorem and Gauss	
CO 4	divergence theorem.	Evaluate
CO 5	find examples to explain the differences between point-wise and	Create
	uniform convergence of sequences of functions, to know what are	
	the properties that are preserved under uniform convergence.	

Syllabus

Units	Content	Hrs.
I	Riemann integrable functions, Riemann - Stieltjes integrable functions, equivalence of Riemann integrable functions, examples, properties of Riemann-Stieltjes integrable functions, Differentiation and integration, total variation of rectifiable curves.	12
П	Point-wise and uniform convergence of sequence and series of functions, Examples of sequence (series) of functions for which point-wise convergence does not preserve, uniform convergence and limit, uniform convergence and Riemann-Stieltjes integral, limit and differentiation.	6
III	Partial derivatives and total derivative of differentiable scalar valued (and vector valued) functions on R ⁿ , Chain rule, Mean-value theorem and applications, Higher order derivatives, interchanging order of derivatives; Taylor's theorem for scalar valued valued functions, Inverse mapping theorem, Implicit mapping theorem	14
IV	Multiple integrals, Properties of integrals, Existence of integrals, iterated integrals, change of variables.	14
V	Curl, Gradient, divergence, Line integrals, surface integrals, Proofs of theorems of Green, Gauss and Stokes	14
	 References. 1. W. Rudin, Principles of Mathematical Analysis, Wiley International Edition, 1985. 2. T.M. Apostol, Calculus Vol.2, Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability, 2nd Edition, John Wiley & Sons, 1969. 3. T. Apostol, Mathematical Analysis, 2nd Edition, Narosa Publishing House, 1985. 	

 R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, 3rd Edition, Wiley International Student edition, 2001.
 K.A. Ross, Elementary Analysis: The theory of Calculus, Springer International Edition, Indian Reprint, 2004.

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	0	1	1	1	1	0
CO2	1	1	1	1	0	1	1	1
CO3	1	1	1	1	1	1	1	1
CO4	1	1	0	0	0	0	1	0
CO5	1	1	1	1	1	0	1	1

Subject Code: MAT412

Linear Algebra

Credits: 5

	Course Outcome	Level
CO 1	understand the concepts of vector spaces, subspaces and linear transformations	Understand
CO 2	appreciate the geometry of vector spaces using parallelogram law, Pythagorean theorem and triangle inequality	Apply
CO 3	know the relation between matrices and linear transformations	Analyse
CO 4	know the concepts of diagonlization, Jordan form and rational canonical form	Evaluate
CO 5	know the difference between various kind of operators like self-adjoint operators, Normal operators etc.	Create

Syllabus							
Units	Content	Hrs.					
Ι	Vector Spaces and its properties; Examples; Subspaces; Smallest Subspace containing a give subset; Span and Linear Independence; Bases; Dimension;	12					
II	Linear Maps; Null spaces and Ranges; Rank-Nullity Theorem; Matrix of a Linear Map; Invertibility; Review of polynomials with complex and real coefficients; Eigenvalues and Eigenvectors; Existence of eigenvalue; Triangularization and Diagonalization of linear transformations; Invariant subspaces.	12					
III	Inner-product spaces; Pythagorean Theorem; Triangle Inequality; Parallelogram Law; Orthonormal Basis - Gram-Schmidt process; Orthogonal Projections and its properties; Definition of adjoint operator and its properties.	12					
IV	Linear operators on inner-product spaces; Self-adjoint and Normal operators; Spectral Theorem.	12					
V	Operators on complex vector spaces; Generalized eigenvectors; Characteristic polynomial and Cayley-Hamilton Theorem; Minimal polynomial; Jordan Form; Rational Canonical Form (if time permits).	12					
	 References: S. Axler, Linear Algebra Done Right, Second edition, Springer, 1997. S. Kumaresan, Linear Algebra - A Geometric Approach, 12th reprint, Prentice Hall of India, 2011. G. Strang, Linear Algebra and its applications, 8th Indian reprint Indian edition, Cengage Learning, 2011. S.H. Friedberg and A.J. Insel, L.E. Spence, Linear Algebra, 4th edition, 						

Prentice-Hall of India, 2003.	
5. K. Hoffman and R. Kunze, Linear Algebra, 2nd edition, Prentice Hall	
of India, 2003.	

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	0	0	1	0
CO2	1	1	1	1	0	0	1	0
CO3	1	1	1	1	0	0	1	0
CO4	1	1	1	1	0	0	1	0
CO5	1	1	1	1	0	0	1	0

Subject Code: MAT413

Probability Theory

Credits: 5

	Course Outcome	Level
CO 1	understand the concept of random variables and the probability distributions	Remember
CO 2	apply Poisson, Gamma, Chi-square and other distributions to solve real life problems	Apply
CO 3	compare discrete and continuous random variables	Analyze
CO 4	derive the probability density function, distribution function of various random variables, and derive the marginal and conditional distributions of bivariate random variables	Evaluate
CO 5	translate real-world problems into probability models	Create

Syllabus						
Units	Content	Hrs.				
Ι	Differentiability, total differential, chain rule. Directional derivative, gradient of a scalar field, geometrical meaning, tangent plane, Hessian matrix, extreme values and saddle point for function of two variables. Random Experiments and Probability Sample space; Sample points; Events; Axioms of Probability; Probability of union of events; Sample spaces with equally likely outcomes; Probability as a continuous set function.	12				
II	Conditional Probability and independence of events: Motivation for conditional probability; Shrinking of sample space when it is known that a certain event occurred; Conditional probability; Independence of events; independent events and disjoint events; Bayes' Theorem and posterior probabilities.	12				
ш	Discrete Random Variables: Definition; Distribution; Examples; Probability mass function and distribution function; Properties of a distribution function; Expected value; Variance of a random variable; Bernoulli, Binomial, Geometric and negative binomial distributions; Poisson distribution and Hypergeometric distribution; Distribution functions, means and variances of various distributions mentioned above; Poisson random variable as an approximation of Binomial random variable.	12				
IV	Continuous random variables: Probability density function and Distribution function; Examples; Expectation and variance of continuous random variables; Need they always exist (Cauchy Distribution); Uniform distribution; Normal distribution; Use of the table of probabilities of Standard normal distribution; Normal approximation of Binomial distribution; Exponential distribution; Gamma, Chi-square, Beta and F distributions; Weibull and Cauchy distributions; Chebychev's inequality and its applications.	12				
V	Joint distribution of two or more random variables; Joint distribution	12				

	functions; Examples; Covariance between two random variables;								
	Independence of random variables; Uncorrelatedness and independence; pairwise independence and mutual independence; Sums of independent random variables; Marginal and Conditional								
	distributions; Conditional distribution: discrete and continuous cases;								
	Bivariate normal distributions, Weak law of Large Numbers;								
	Statements of Central Limit Theorem.								
	References:								
	1. S. Ross, A first Course in Probability, 6th Edition, Pearson								
	Education, 2006.								
	2. A. Dasgupta, Fundamentals of Probability: A First Course,								
	Springer, 2010.								
	3. W. Feller, An introduction to Probability Theory and its								
	Applications, Volume 1, 2nd Edition, Wiley, 1969.								
	4. R.V. Hogg, J. McKean and A.T. Craig, Introduction to								
	Mathematical Statistics, Pearson Education, sixth edition, 2005.								

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	1
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	0	1	1	0
CO4	1	1	1	1	0	1	0	1
CO5	1	1	1	1	1	1	1	1

Semester VIII Subject Code: MAT421

Credits: 5

Measure and Integration

	Course Outcome	Level
CO	to understand the concept of measure of a Lesbegue Measurable Subset	Remember
1	of R as the generalization of length of an interval.	Understand
CO 2	to understand measurability of functions	Apply
CO 3	to understand the definition of a Lebesgue Integral	Analyze
CO 4	to understand convergence theorems	Evaluate
CO 5	to understand abstract measure theory	Create
CO 6	to be able to solve problems on these topics	

	Synabus	
Units	Content	Hrs.
I	A quick review (in about 2 lectures) of Riemann integral. Definition of Lebesgue outer measure of a subset of R and its properties -Definition of a Lebesgue measurable set - The sigma-algebra of Lebesgue measurable sets. Every interval is Lebesgue measurable - Cantor (ternary) set - The inner and outer regularity of Lebesgue measurable sets - Borel sigma algebra.	12
II	Lebesgue Measurable functions on R - liminf and limsup of measurable functions - simple functions - any non-negative measurable function is the limit of an increasing sequence of simple functions - Existence of non-measurable sets, Lebesgue integrals of simple functions, non-negative measurable functions, any real values measurable function, complex valued functions on R and their properties.	12
III	Fatou's lemma, Monotone convergence theorem, Dominated and bounded convergence theorems, integral of series, Necessary and sufficient condition for Riemann integrability - Riemann integrability implies the Lebesgue integrability	12
IV	Abstract measure theory: σ -algebra B of subsets of a set X, measurable space, measure space, integral of measurable functions over abstract measure space. Signed measure, Hahn decomposition, Jordan decomposition, Lebesgue decomposition theorem - Radon-Nykodim theorem	12
V	L^p spaces, for $1 \le p < \infty$ and the space L^∞ -space -Holder's inequality, Minkowski's inequality $-L^p$ spaces as metric spaces - completeness of L^p -spaces, for $1 \le p \le \infty$ Product measure - monotone class and sigma-algebra-Fubini's Theorem.	12
	 References. G. de Barra, Measure theory and integration, Wiley Eastern Ltd., 1981. H.L. Royden and P. Fritzpatric, Real Analysis, Fourth Edition, Pearson Education, 2010. C.D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, 3rd Edition, Academic Press, 1998. 	

- 4. G.B. Folland, Real Analysis -Modern Techniques and their applications, 2nd Edition, Wiley, 1999.
 - 5. I.K. Rana, Measure theory and Integration, 2nd edition, Narosa Publishing, 2000.

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	0	1	0	0	1	1
CO2	1	1	0	1	0	0	1	0
CO3	1	1	0	1	0	1	1	0
CO4	1	0	0	1	0	0	1	0
CO5	1	1	1	1	0	1	1	0

Subject Code: MAT422

Topology

Credits: 5

	Course outcome	Level
CO 1	understand the concepts of topology, basis, subbasis, subspace topology, open set, closed set, interior, closure, continuous function, homeomorphism, and open map.	Remember Understand
CO 2	find the applications of topology.	Apply
CO 3	identify the differences among the various separation axioms	Analyze
	discuss the proofs Urysohn's lemma, Tietze's extension theorem,	
CO 4	Urysohn's metrization theorem, Tychnoff's theorem	Evaluate
CO 5	construct examples and counter examples of various topological properties	Create

	Syllabus	
Units	Content	Hrs.
I	Topological space definitions and examples, Basis and subbasis, order topology, continuous functions, product topology, subspace topology, closed sets, closures, limit points, cluster (accumulation) points, interior and boundary of a set, metric topology, quotient topology.	12
П	Connectedness, components, Locally connectedness, and path-connectedness and locally path-connectedness.	12
III	Compactness, tube lemma, compact subspaces of real line, characterization of compact metric spaces, locally compactness.	12
IV	Countability axioms, <i>T</i> 1-spaces, Hausdorff spaces, regular spaces, completely regular spaces, Normal spaces, one-point compactification, Uryosohn's lemma and Tietze extension theorem.	12
V	Urysohn Metrization Theorem, Tycknoff's theorem, Stone-Cech Compactification.	12
	 References. J. R. Munkres, Topology, 2nd Edition, Prentice Hall of India, 2000. G.F. Simmons, Introduction to Topology and Modern analysis, McGraw-Hill, 1963. S. Kumaresan, Topology of Metric Spaces, 2nd Edition, Narosa Publishing, 2011. K. D. Joshi, Introduction to General Topology, Second Edition, New Age International Publishers, 1983. M.A. Armstong, Basic Topology, Springer International Edition, 2005. 	

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	1	0	1	0	1	0
CO2	1	1	0	0	1	0	1	1
CO3	1	1	0	1	1	0	1	1
CO4	1	1	0	0	0	0	1	1
CO5	1	1	0	1	0	0	1	1

Subject Code: MAT423

Partial Differential Equations

Credits: 5

	Course Outcome	Level
CO 1	understand the relation between the theory and modelling in the problems arising in various fields, such as, economics, finance, applied sciences and etc	Remember Understand
CO 2	Enhance their mathematical understanding in representing solutions of partial differential equations.	Apply
CO 3	classify the partial differential equations and transform into canonical form	Analyze
CO 4	determine the solution representation for the three important classes of PDEs, such as Laplace, Heat and wave equation by various methods.	Evaluate
CO 5	Formulate fundamentals of partial differential equations, like Green's function, maximum principles, Cauchy problem, to take a research career in the area of partial differential equations	Create

	Syllabus	
Units	Content	Hrs.
I	First order PDE: Classification of PDEs into linear, semi-linear, quasilinear, and fully nonlinear equations. Well-posed problems in the sense of Hadamard. Geometrical Interpretation of a First-Order Equation. Solution of first order PDEs: Cauchy problem, Method of characteristics, Lagrange's method. Non-linear first order PDEs. Initial value problems.	12
Π	Second order PDE Classification of second order PDEs in to hyperbolic, elliptic and parabolic PDEs. Canonical forms.	6
III	Wave Equation d'Alembert's formula, uniqueness and stability of solutions to the initial value problem for one dimensional wave equation. Parallelogram identity, domain of dependence, range of influence, finite speed of propagation. Method of spherical means. Hadamard's method of descent. Duhamel's principle for solutions of non-homogeneous wave equation. Uniqueness using energy method.	14
IV	Laplace equation Green's identities. Uniqueness of solutions to Dirichlet, Neumann, and mixed boundary value problems. Fundamental solutions. Mean value property. Properties of harmonic functions: Maximum principle and uniqueness, Regularity, Liouville's theorem. Green's function forDirichlet boundary value problem on upper half-space and ball. Energy method: Uniqueness, Dirichlet principle.	14
V	Heat equation Fundamental solution. Method of eigen function expansion for solutions. Cauchy problem for homogeneous heat equation, infinite speed of propagation. Duhamel's principle for non-homogeneous heat equation. Maximum principle and uniqueness. Energy method: Uniqueness, backward uniqueness	14
	References: 1. L.C. Evans, Partial Differential Equations, AMS, Second Edition, 2010.	

2.	T. Amaranath, An elementary course in partial differential equations,
	Narosa Publishing House, 2003.
3.	R.Mc Owen, Partial Differential Equations: Methods and
	Applications, Pearson Education, 2002.
4.	F. John, Partial differential equations, Fourth Edition, Springer-verlag,
	New York, 1991.
5.	Q. Han, A Basic Course in Partial Differential Equations, AMS, 2011.
6.	T. Myint-U, and L. Debnath, Linear Partial Differential Equations for
	Scientists and Engineers Fourth Edition Birkhauser 2007

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	1	1	1	0	1	1
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	0	1	1	1
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	0	1	1

SEMESTER – IX Subject Code: MAT511

Credits: 5

Advanced Complex Analysis

Course Outcome (CO)

On completion of the course the students will be able to

	Course Outcome	Level
CO 1	understand the concepts of complex integration, series expansion of a meromorphic function, infinite product expansion of an entire functions.	Remember Understand
CO 2	solve problems on complex integration.	Apply
CO 3	examine the proofs of Cauchy's theorems for rectangle for disc, Cauchy's integral formula.	Analyze
CO 4	discuss the proofs of Morera's theorem, Liouville's theorem, fundamental theorem of algebra.	Evaluate
CO 5	find the complex integrals and infinite sums and series using the Cauchy's residue theorem, Weierstrass theorem and Mittag-Leffler theorem.	Create

Syllabus

Units	Content	Hrs.
I	Quick review of complex derivative, partial derivative, C-R equations, power series. Branch of log and some other functions, Cauchy's theorem for rectangle, Rectangle theorem with exceptional points, exact differentiable form, Cauchy's theorem for disc, Winding number, Cauchy's theorem for disc with exceptional points, Cauchy's integral formula, Higher order derivatives.	12
II	Morera's theorem, Liouville's theorem, fundamental theorem of algebra, Removable singularities, Taylor's theorem, zeroes and poles, essential singularity, algebraic order of isolated singularity, local correspondence theorem, open mapping theorem, maximum modulus principle.	12
ш	Simply connected region, Cauchy's theorem for simply connected region, homology, Cauchy's theorem for multiply connected region, Residues, Argument principle, Rouche's theorem, evaluation of definite integrals (theory with proof).	12
IV	Harmonic function, mean-value property of harmonic function, Poisson's formula, Schwartz theorem, Reflection principle, Weierstrass theorem, Taylor's series and Laurent series.	12
V	Partial fractions, Mittag-Leffler theorem, expansion of $\frac{\pi}{sin\pi z}$, infinite products, canonical products, Gamma function, infinite product expressions for $\pi \cot \pi z$ and $\sin \pi z$, Jensen's formula, Poisson-Jensen's formula.	12
	References.	

1.	L.V. Ahlfors, Complex Analysis, 3rd edition, McGraw-Hill Inc.,	
	1979.	
2.	J. Bak and D.J. Newmann, Complex analysis, 2nd edition,	
	Springer Indian Edition (SIE), 2009.	
3.	H.A. Priestley, Complex analysis, 2nd edition, Oxford University	
	Press, Indian Edition, 2006.	
4.	S. Ponnusamy and H. Silverman, Complex variables with	
	applications,	
	Birkhauser, Boston, 2006.	
5.	T.W. Gamelin, Complex analysis, Springer, 2004.	
6.	J.B. Conway, Functions of one complex variable, 2nd edition,	
	SISE, Narosa, 1996.	

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	1
CO2	1	1	1	1	0	1	1	1
CO3	1	1	0	1	0	0	1	1
CO4	1	1	0	1	0	0	1	0
CO5	1	1	1	1	1	1	1	1

SEMESTER – X **Course Code: MAT521**

Credit: 5

Functional Analysis

	Course Outcome	Level
CO 1	explain the concepts of normed linear space (NLS), continuity of a linear map, L _p -space, Banach, Hilbert spaces, four pillars	Remember & Understand
CO 2	demonstrate the convergence in the different types of spaces	Apply
CO 3	analyze the properties of different types NLS	Analyze
CO 4	determine the linear functional in terms orthonormal basis	Evaluate
CO 5	Obtain the open mapping theorem from closed graph theorem and vice-versa	Create

	Syllabus	
Units	Content	Hrs.
Ι	Normed Linear spaces, Banach spaces, X is complete iff $\{x : x \le 1\}$ is complete, direct sum of Banach spaces, quotient space, l^n_p and l_p spaces (including the proof of Holder's and Minkowski's inequalities), $. _p \rightarrow . _{\infty}$ as $p \rightarrow \infty$, the spaces of continuous bounded functions $C(X, \mathbf{R})$ and $C(X, \mathbf{C})$.	12
Π	Bounded linear transformations, equivalences of continuous linear transformations, norm of a bounded linear transformation and its properties, the space B(X,Y) bounded linear transformations, completeness of B(X,Y), equivalence of different norms on a space linear space - Every linear transformation from a finite dimensional normed linear space is continuous - dual space(the space of continuous linear functionals) $X^* - (l^n_p)^* = l^n_q$ and $(l^n_1)^* = l^n_\infty, (l^n_\infty)^* = l^n_1 - l_p$ and $(l_1)^* = l_\infty, (c_0)^* = l_1$ and $(l^n_\infty)^* \neq l_1$, Hahn-Banachextension theorem (for both real and complex cases) - applications of Hahn-Banach theorems.	12
ш	Natural imbedding of X in X^{**} - reflexive spaces - l^n_p are reflexive, $1 \le p \le \infty$, weak topology on X [*] , strong topology on X [*] - a Banach space is reflexive iff its closed unit sphere is compact in the weak topology - weak α -topology on X [*] -closed unit ball in a normed linear space is always compact Housdorff in the weak [*] -topology, Open mapping theorem, projections on Banach spaces, direct sums and projections, closed graph theorem, conjugate of an operator and its properties.	12
IV	Inner product spaces, Hilbert spaces, Cauchy-Schwartz inequality - l_2^n and l_2 spaces, parallelogram law - closed convex set has a unique vector of minimum norm - polarization identity - pythogorean theorem - orthogonal complement and its properties- best approximation of a closed subspace of a Hilbert space exists and it is in the orthogonal complement - H = M \oplus M [⊥] , for any closed subspace M - orthonormal sets - examples, Bessel's inequality, equivalences of orthonormal basis- Fourier series - Riezs representation theorem - Gram-Schmidt's orthogonalization process - Conjugate space H [*]	12
V	Adjoint of an operator and its properties - self adjoint operator-positive	12

 Spaces. References: G.F. Simmons, Introduction to Topology and Modern analysis, McGraw-Hill, 1963. B.V. Limaye, Functional Analysis, 2nd edition, New Age international, 1996. B. Bollabas, Linear Analysis, an introductory course, Cambridge University Press, 1994. E. Kreyzig, Introductory Functional Analysis with applications, Wiley ClassicsLibrary, 2001. M. Thamban Nair, Functional Analysis: A First Course, Prentice- 	opera opera	ators and inequality on self-adjoint operators - normal and unitary ators -projections - spectral theoremfor finite dimensional Hilbert
 References: G.F. Simmons, Introduction to Topology and Modern analysis, McGraw-Hill, 1963. B.V. Limaye, Functional Analysis, 2nd edition, New Age international, 1996. B. Bollabas, Linear Analysis, an introductory course, Cambridge University Press, 1994. E. Kreyzig, Introductory Functional Analysis with applications, Wiley ClassicsLibrary, 2001. M. Thamban Nair, Functional Analysis: A First Course, Prentice- 	space	
 G.F. Simmons, Introduction to Topology and Modern analysis, McGraw-Hill, 1963. B.V. Limaye, Functional Analysis, 2nd edition, New Age international, 1996. B. Bollabas, Linear Analysis, an introductory course, Cambridge University Press, 1994. E. Kreyzig, Introductory Functional Analysis with applications, Wiley ClassicsLibrary, 2001. M. Thamban Nair, Functional Analysis: A First Course, Prentice- 	Refe	rences:
 McGraw-Hill, 1963. 2. B.V. Limaye, Functional Analysis, 2nd edition, New Age international, 1996. 3. B. Bollabas, Linear Analysis, an introductory course, Cambridge University Press, 1994. 4. E. Kreyzig, Introductory Functional Analysis with applications, Wiley ClassicsLibrary, 2001. 5. M. Thamban Nair, Functional Analysis: A First Course, Prentice- 	1.	G.F. Simmons, Introduction to Topology and Modern analysis,
 B.V. Limaye, Functional Analysis, 2nd edition, New Age international, 1996. B. Bollabas, Linear Analysis, an introductory course, Cambridge University Press, 1994. E. Kreyzig, Introductory Functional Analysis with applications, Wiley ClassicsLibrary, 2001. M. Thamban Nair, Functional Analysis: A First Course, Prentice- 		McGraw-Hill, 1963.
 international, 1996. B. Bollabas, Linear Analysis, an introductory course, Cambridge University Press, 1994. E. Kreyzig, Introductory Functional Analysis with applications, Wiley ClassicsLibrary, 2001. M. Thamban Nair, Functional Analysis: A First Course, Prentice- 	2.	B.V. Limave, Functional Analysis, 2nd edition, New Age
 B. Bollabas, Linear Analysis, an introductory course, Cambridge University Press, 1994. E. Kreyzig, Introductory Functional Analysis with applications, Wiley ClassicsLibrary, 2001. M. Thamban Nair, Functional Analysis: A First Course, Prentice- 		international 1996
 University Press, 1994. E. Kreyzig, Introductory Functional Analysis with applications, Wiley ClassicsLibrary, 2001. M. Thamban Nair, Functional Analysis: A First Course, Prentice- 	3.	B. Bollabas, Linear Analysis, an introductory course, Cambridge
 E. Kreyzig, Introductory Functional Analysis with applications, Wiley ClassicsLibrary, 2001. M. Thamban Nair, Functional Analysis: A First Course, Prentice- 		University Press 1994
 Wiley ClassicsLibrary, 2001. M. Thamban Nair, Functional Analysis: A First Course, Prentice- 	4.	E. Krevzig. Introductory Functional Analysis with applications.
5. M. Thamban Nair, Functional Analysis: A First Course, Prentice-		Wiley Classics Library 2001
5. M. Thamban Nair, Functional Analysis: A First Course, Prentice-	~	M = 1 M =
	Э.	M. Thamban Nair, Functional Analysis: A First Course, Prentice-
Hall of India, New Delhi, 2002.		Hall of India, New Delhi, 2002.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	1	1	1	1	1	0
CO2	1	1	1	1	1	0	1	1
CO3	1	0	1	1	1	0	1	0
CO4	1	1	1	1	0	1	1	0
CO5	1	1	1	1	1	0	1	0

Elective Courses

Subject Code: MAT01E

Credits: 3+2

Computational Mathematics

	Course Outcome	Level	
CO 1	understand the theory of weak formulation of boundary value	Remember	
	problems	Understand	
CO^{2}	Apply the basics of analysis to estimate error while solving partial	Apply	
	differential equations numerically	прри	
CO 3	Differentiate finite difference and element method for PDEs	Analyze	
CO 4	evaluate the robustness and the accuracy of the algorithms and how	Evoluato	
CU 4	fast the numerical results converge to the analytical solutions.	Evaluate	
CO 5	design algorithms to solve scientific problems that cannot be		
	solved exactly	Create	

Syllabus					
Units	Content	Hrs.			
Ι	Finite Difference Method: Parabolic equations: Explicit and Crank-Nicolson Schemes for – weighted average approximation - derivative boundary conditions - Truncation errors - Consistency, Stability and convergence- Lax Equivalence theorem eigenvalues of a common tridiagonal matrix - Gerischgorin's theorems - stability by matrix and Fourier-series method - A.D.I. method.	10			
II	Hyperbolic Equations: First order quasi-linear equations and characteristics - numerical integration along a characteristic - Lax-Wendroff explicit method - second order quasi - linear hyperbolic equation - characteristics- solution by the method of characteristics - Explicit method for linear hyperbolic equations.	10			
III	Elliptic Equations: Solution of Laplace and Poisson equations in a rectangular region using standard five point finite difference formula - five point finite difference formula with non uniform grid - Finite difference in Polar coordinate - Discretization error -Mixed Boundary value problems	10			
IV	FINITE ELEMENT METHODS: Weak formulation of Boundary Value Problems, Ritz-Galerkin approximation, Error Estimates, Piecewise polynomial spaces, Finite Element Method, Relationship to Difference Methods, Local Estimates.	9			
V	Finite element methods for elliptic problems, error analysis for the finite element method, Galerkin methods for time-dependent problems, error estimates, two-dimensional problems.	6			
	 Laboratory Assignments (not limited to): 1. Explicit and Crank-Nicholson schemes for with prescribed and derivative boundary conditions 2. ADI method for two space dimensional parabolic PDE 3. Method of numerical integration along characteristics for first order hyperbolic PDE 4. Lax-Wendroff method 5. Finite difference method for Laplace and Poisson's equations 6. Finite element method for Two point BVP 	45			

7.1	Finite element method for one space parabolic PDE
8. l	Finite Element method for Poisson's equation.
Re	ferences:
1.	G.D. Smith, Numerical Solution of P.D.E., Oxford University Press, New
	York, 1995.
2.	A.R. Mitchel and S.D.F. Griffiths, The Finite Difference Methods in
	Partial Differential Equations, John Wiley and sons, New York, 1980.
3.	K.W.Morton, and D.F.Mayers, Numerical Solutions of Partial Differential
	Equations, Cambridge University Press, Cambridge, 2002.
4.	S. Brenner and R. Scott, The Mathematical Theory of Finite Elements
	Methods, Springer-Verlag, New York 1994.
5.	C. Johnson, Numerical Solutions of Partial Differential Equations by the
	Finite Element Method, Cambridge University Press, Cambridge 1987

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	0	1	1	0	1	1
CO2	1	1	1	1	1	1	1	1
CO3	1	0	0	1	0	1	1	1
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	0	1	1

Subject Code: MAT02E

Mathematical Methods

Credits: 4 or 5

Course Outcome (CO) On completion of the course the students will be able to

	Course Outcome	Level
CO 1	Understanding the idea about functional and its properties	Remember Understand
CO 2	solve Fredholm, Volterra and singular integral equations	Apply
CO 3	Analyze the Fredholm theory	Analyze
CO 4	Determine the solutions of Brachistochrone problem, geodesics problems and isoperimetric problems	Evaluate
CO 5	Formulate the knowledge of calculus of variation to solve a wide range of real world problems of applied sciences	Create

Syllabus

Units	Content	Hrs.
I	Integral equation: Introduction: Types of Integral equations A"U Integral equations with separable kernels - Reduction to a system of algebraic equations, Fredholm alternative, an approximate method, Fredholm integral equations of the first kind, method of successive approximations - Iterative scheme, Volterra integral equation, some results about the resolvent kernel, classical Fredholm theory - Fredholm's method of solution - Fredholm's first, second, third theorems (without proof).	12
II	Applications of Integral Equations: Application to ordinary differential equation - Reduction of Initial value problems and boundary value problems to integral equations - Green's function Approach - Singular integral equations – Abel integral equation	12
III	Symmetric Kernels: Introduction, Fundamental Properties of Eigenvalues and Eigenfunctions for symmetric kernels, Solution of a symmetric integral equation, Rayleigh-Ritz Method. (if time permits)	12
IV	Calculus of Variations: Functionals. Variation of a functional - Euler- Lagrange equation -Necessary and sufficient conditions for extrema - Functional dependent on higher-order derivatives, functional dependent on the function of several independent variables, variational problems in parametric form. Sufficient condition for weak/storing extremum.	12
V	Direct Methods in Variational Problems: Direct Methods, Euler's finite difference methods, The Ritz method, Kantorovich's method.	12
	 References: 1. I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice Hall, New Jersey, 1963. 2. F.B. Hildebrand, Methods of Applied Mathematics, Dover, New York, 1992. 3. F.G. Tricomi, Integral Equations, Dover Publications, 1985 4. L. Elsgolts, Differential Equations and the Calculus of Variations, MIR Publishers, Moscow, 1970. 	

5 Weinstock Calculus of Variations with Applications to Physics	
and Engineering McCrow Hill New York 1052	
and Engineering, McGraw-Hill, New York, 1952.	
6. R.P. Kanwal, Linear Integral Equations: Theory & Technique,	
Second Edition, Birkhäuser, 2013.	

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	0	1	0	1	1	0
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	0	1	1	0
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1

Subject Code: MAT03E

Fluid Dynamics

Credits: 4 or 5

	Course Outcome	Level
CO1	Understand the basic properties and principles of viscous and non-viscous fluids	Remember/Understand
CO2	Derive and deduce the consequences of the governing equations of fluids	Apply
CO3	Solve kinematics problems such as finding particle paths and streamlines	Analyze
CO4	Understand the basic theorems of fluid mechanics and its applications	Evaluate
CO5	Derive the boundary layer equations of some basic flows and its solutions	Create

Syllabus					
Units	Content	Hrs			
Ι	KINEMATICS OF FLUIDS IN MOTION: Real and ideal fluids. Coefficient of viscosity. Steady and unsteady flows. Isotropy. Orthogonal curvilinear coordinates. Velocity of a fluid particle. Material local and convective derivative. Acceleration. Stress. Rate of strain. Vorticity and vortex line. Stress analysis. Relation between stress and rate of strain, Streamline. Path lines. Streak lines. Velocity potential. Eulerian and Lagrangian forms of Equation of continuity. Boundary conditions and boundary surfaces.	15			
II	EQUATIONS OF MOTION OF A FLUID: Pressure at a point in a fluid. Euler's equations of Motion. Momentum equations in cylindrical and spherical polar coordinates. Conservative field of force. Flows involving axial symmetry. Equations of motion under impulsive forces. Potential theorems.	15			
III	IN VISCID FLOWS: Energy equation. Cauchy's Integrals. Helmholtz equations. Bernoulli's equation and applications. Lagrange's hydro-dynamical equations. Bernoulli's theorem and applications. Torricelli's theorem. Trajectory of a free jet. Pitot tube. Venturi meter.	15			
IV	TWO DIMENSIONAL AND IRROTATIONAL MOTION: Two-dimensional flows. Stream function. Complex potential. Irrational and incompressible flow, Complex potential for standard two-dimensional flows. Cauchy Riemann equations in polar form. Magnitude of velocity. Sources and sinks in two dimensions. Problems. Kinetic energy of liquid. Theorem of Blasius. Complex potential due to source. Doublet in two dimensions. MilneThomson circle theorem. Fflow and circulations. Stoke's theorem. Kelvin circulation theorem. Kinetic energy of infinite liquid. Kelvins minimum energy theorem. Permanence if irrotational motion. Vortex motion. Dynamical similarity. Boundary layer theory.	15			
	 References 1. G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1993. 2. F. Chorlton, Text book of Fluid Mechanics, CBS Publishers, New 				

Delhi, 1985.	
3. F. White, Viscous Fluid Flow, McGraw -Hill, 1991.	
4. M.D. Raisinghania, Fluid Dynamics, S Chand, New Delhi, 2000.	

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	0
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	0
CO4	1	1	0	0	1	1	0	1
CO5	1	1	1	0	1	1	0	1

Subject Code: MAT04E

Transformation Groups

Credits: 4

Course Outcome (CO)

On completion of the course the students will be able to

	Course Outcome	Level
CO 1	to understand Groups of bijections	Remember Understand
CO 2	to be able to prove that the isometries the plane are given by translation, rotation, reflections and glide reflections.	Apply
CO 3	to understand Affine and Projective Transformations	Analyze
CO 4	to understand the standard methods of solving ODEs with the help of symmetries	Evaluate
CO 5	to be able solve problems on these topics	Create

Syllabus

Units	Content	Hrs.
Ι	Revision of Group Theory	15
II	Isometries in R ²	15
III	Affine transformations and projective transformations	15
IV	Symmetries of Differential Equation	15
	References.1. S.V. Duzhin and B.D. Chebotarevsky, Transformation Groups for beginners, AMS, 2004	

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	0	0	1	0	1	0
CO2	1	1	0	0	1	0	1	0
CO3	1	1	1	1	1	0	1	0
CO4	1	1	0	0	1	1	1	0
CO5	1	1	0	0	1	0	1	0

Subject Code: MAT05E

Design & Analysis of Algorithms

Credits: 4

Course Outcome (CO) On completion of the course the students will be able to

	Course Outcome	Level
CO 1	study some of the basic and key techniques to analyze and design algorithms	Understand
CO 2	see the practical applications of algorithms and the impact of the same	Apply
CO 3	have hands on experience in conducting a few challenging scientific computing	Analyse
CO 4	develop real life problem solving capability	Evaluate
CO 5	connect the theory and computing	Create

Units	Content	Hrs.
I	Introduction to Algorithms, lots of examples, Recurrent relations and closed form solution, Tools and techniques for summation, Manipulation of sum, floor and ceiling functions, Finite and infinite calculus, Problem solving using the tools	9
II	Number theory an applied perspective, Divisibility, Introduction to relations and functions, Mod and congruence relation, Application of congruence, Independent Residues.	9
Ш	Permutation, Permutation of Multi sets, Combination, Application of Permutation and combination, Combinatorial properties of permutations.	9
IV	Design and analysis of algorithms with examples like Euclid algorithm etc,	9
V	Sorting - Insertion sort - Divide and Conquer approach -Merge sort - Quick sort. Asymptotics and analysis. Complexity Theory. Polynomial time - Complexity classes - class P, NP, NPC - reducibility - NP Completeness problems.	9
VI	Scientific computing with open source R.	30
	 References: T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, Prentice Hall of India, New-Delhi, 2004. S. Basse, Computer Algorithms: Introduction to Design and Analysing, Addison Wesley, 1993. A. Levitin, Introduction to the Design and Analysis of Algorithms, Pearson Eduction Pvt. Ltd, New Delhi, 2003. S. Sedgewick, Algorithms, Addison Wesley, 2011. 	

Syllabus

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	0	1	1	1
CO2	1	1	1	1	0	1	1	1
CO3	1	1	1	1	0	1	1	1
CO4	1	1	1	1	0	1	1	1
CO5	1	1	1	1	0	1	1	1

Subject Code: MAT06E

Number Systems

Credits: 4

	Course outcomes	Level
CO 1	understand axiomatic approach of set theory, ordered pairs, natural number system, addition, multiplication and order relation on natural numbers, finite and infinite sets,	Remember Understand
CO 2	solve problems on cardinal numbers	Evaluate
CO 3	examine the rational numbers, real numbers through Dedekind's cuts, field structure, Archimedean property, least upper bound property,	Analyze
CO 4	discuss the real numbers construction through Cantor's construction, field structure, uniqueness of real number system, decimal expansion.	Evaluate
CO 5	determine the rigorous proofs of properties of integers.	Create

	Syllabus	
Units	Content	Hrs.
I	Axioms of set theory, Russell's paradox, Foundation axiom, ordered pair, relation, function, Peano's postulates and natural numbers, definition and properties of addition on N, definition and properties of multiplication on N, order relation on N and its properties. Equivalence of principle of induction and well ordering property on N, finite and infinite sets, pigeonhole principle, characterization of finite sets, Schörder-Bernstein theorem, countable sets and their properties.	12
П	Definition of integers as equivalence classes of pairs of natural numbers, addition, multiplication, order relation, subtraction and their properties on Z, proof of the fact that Z is an integral domain, definition of rational numbers, operations on rational numbers and their properties, Q is an ordered field satisfying Archimedian property, denseness of Q in itself, proof of Q is not having least upper bound property, absolute value on Q	12
III	Dedekind's construction of real numbers through cuts, addition, multiplication, and order relation on R, R is an ordered Archimedian field with least upper bound property	12
IV	Cantor's construction of real numbers through equivalence classes of Cauchy sequences of rational numbers, addition, multiplication, field structure, order relation, completeness of R, least upper bound property of R in Cantor's construction of real numbers, uniqueness of real number system, decimal expansion of a real number, when do two different decimal expansion represent a same real number? When does a decimal expansion represent a rational number?	12
V	Uncountable set, properties of uncountable sets, R is equinumerous with ever interval having at least two points, R is equinumerous with Rn , definition of cardinality, arithmetic on cardinalities, Aleph naught, aleph and their arithmetic, [ordinals, equivalence of axiom of choice (if time permits)]	12

Refer	ences.
1.	A. G. Hamilton, Numbers, Sets and Axioms: The Apparatus of
	Mathematics, Cambridge University Press, Cambridge, 1983.
2.	E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer,
	New York , 1975.
3.	E. Kamke, Theory of Sets, Dover Publications Inc., New York,
	1950.
4.	W. Rudin, Principles of Mathematical Analysis, McGraw-Hill Inc.,
	New York, 1976.

	0							
CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	0	0	1	1	0
CO2	1	1	1	0	0	0	1	1
CO3	1	1	1	1	1	1	1	1
CO4	1	1	1	0	0	1	1	0
CO5	1	1	0	0	0	0	1	0

Course Code: MAT07E

Credit: 4 or 5

Nonlinear Programming

Course Outcome (CO) On completion of the course the students will be able to

	Course Outcome	Level
CO 1	learn about Convex sets and functions; characterization of	Remember &
COT	convex functions.	Understand
CO 2	study the Characterization of global optimality of a convex	Apply
	program.	Аррту
CO 3	study the Optimality conditions of linear and nonlinear	Analuza
03	programs.	Allalyze
CO 4	appreciate the beauty of Lagrangian duality; weak and strong	Evoluato
	duality theorems.	Evaluate
CO 5	understand about the Algorithmic maps and its convergence.	Create

Units	Content	Hrs.
I	Introduction to Optimization problems.(real life examples, constrained and unconstrained, convex and non-convex etc.,) Convex sets, convex hull, Caratheodory's theorem, Separation theorem and Farka's lemma. (Standard fixed point theorems without proof after teaching Farka's lemma) Convex functions, first and second derivative convexity characterizations, Euclidean(metric) projection on a convex set.	12
II	Necessary and sufficient conditions for local and global optimality of a feasible point, Weierstrass Theorem. Definition of descent direction and a sufficient condition for descent direction.	12
III	Optimality conditions: Definitions of normal cone, cone of feasible directions and tangent cone. Relationship between these cones. Optimality conditions based on these cones. Fritz John optimality conditions and KKT optimality conditions. Different constraint qualifications (Abadie's CQ, Mangasarian- Fromovitz CQ, Slater CQ, Linear independence CQ) and their relationship with KKT optimality conditions.	12
IV	Lagrangian Duality: Lagrangian dual problem, Examples to find the dual of a linear as well as nonlinear programming problems, Lagrange multipliers and its relation to global optimality. Convexity of dual problem. Duality gap and existence of Lagrange multipliers, Global optimality conditions in the absence of duality gap. Saddle point and global optimality. Weak and strong duality theorems for convex programs. Explained how these theorems work for linear and quadratic programming problems.	12

Syllabus

	Definition of sub-gradient for a convex function. Example of a dual problem with non differentiable objective.	
V	Sub-gradient projection algorithm for convex problems.	12
	Algorithms and algorithmic maps. Examples of algorithms and	
	algorithmic maps. Zangwill's convergence theorem. (without proof)	
	References	
	1. O. Mangasarian, Nonlinear programming, Mc Graw-Hill Inc.,	
	1969.	
	2. M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear programming, Wiley- Blackwell, 2006	
	 N. Andreasson, A. Evgrafov and M. Patriksson, An Introduction to Continuous optimization, Springer, 2013. 	

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	1
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1

Course Code: MAT08E

Credit: 4 or 5

Introduction to Lie Algebras

	Course Outcome	Level
CO 1	Topological groups and its properties in general. A detailed study of the group of $GLn(R)$ and its various subgroups and their topological properties.	Remember & Understand
CO 2	The various decompositions available for different matrix classes and its applications.	Apply
CO 3	The maps like exponential and logarithm of a matrix, its properties.	Analyze
CO 4	Linear Lie groups and its Lie algebras. Campbell-Hausdorff formula.	Evaluate
CO 5	Lie algebras and its representations. Nilpotent and solvable Lie algebras. Semi-simple Lie algebras.	Create

	Syllabus	
Units	Content	Hrs.
Ι	Review of the following: exponential and logarithmic functions of real and complex variables; inverse function theorem; triangularizability, diagonalizability and simultaneous diagonalizability of matrices; Jordan Canonical Form; Topology: Hausdorff topology, continuity, compactness and connectedness; Groups: Normal groups, homomorphism between groups, nilpotent and solvable groups; total derivatives and chain rule.	12
Π	Topological Groups; The group $GL(n,R)$; Examples of subgroups of $GL(n,R)$; Polar decomposition in $GL(n,R)$; The orthogonal group; Gram decomposition.	12
III	Exponential and Logarithm of a matrix; total derivative of the exponential.	12
IV	Linear Lie Groups: One parameter semigroups and subgroups; Lie algebra of a linear Lie group; Linear Lie groups as sub-manifolds; Campbell-Hausdorff formula.	12
V	Lie algebras: Definitions and examples; nilpotent and solvable Lie algebras; semi-simple Lie algebras.	12
	 References: J. Faraut, Analysis on Lie Groups, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2008. B. Hall, Lie Groups, Lie Algebras, and Representations, Springer International Publishing, Switzerland, 2015. A. Baker, Matrix Groups: An Introduction to Lie Group Theory, Springer-Verlag, London, UK, 2002. N. J. Higham, Functions of Matrices, SIAM, Philadelphia, 2008. 	

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	0	1	1	0	1	0
CO2	1	1	0	1	1	0	1	0
CO3	1	1	0	1	1	0	1	0
CO4	1	1	0	1	1	0	1	0
CO5	1	1	0	1	1	0	1	0

Subject Code: MAT09E

Algebraic Number Theory

Credits: 4

Course Outcome (CO) On completion of the course the students will be able to

	Course Outcome	Level
CO 1	know the preliminaries of Galois theory	Understand
CO 2	have knowledge on module theory and finitely generated module theory	Apply
CO 3	understand the effects of algebraic methods and analytic methods in number theory	Analyse
CO 4	understand Gauss's and Artin's conjecture on primitive roots	Evaluate
CO 5	Understand more conjectures on number theory and how to go about solving them	Create

Units	Content	Hrs.
Ι	Introduction; A quick review on concepts like Integral domain, prime ideal, maximal ideal, prime number theorem(without proof), various estimates on $\pi(x)$, module theory and finitely generated module theory	12
II	Number fields: Algebraic numbers, Algebraic integers, transcendental numbers, Algebraic Number Fields, Liouville's Theorem, finite extension of Q, Dedekind domain, primitive element theorem	12
III	Primtive roots, semi-primitive roots, Sophie Germain prime, Gauss's conjecture, Artin's generalized conjecture, various estimates around the conjecture	12
IV	abc conjecture, non-wieferich primes, estimates on the number of primes $p \le x$ such that $2 p-1 6 \equiv 1 \mod p 2$, Fermat's last theorem, Erdős' conjecture on square full natural numbers, Connecting these conjectures with Fermat's last theorem	12
V	Analytic methods, The Riemann zeta function, Dedekind Zeta Function, Zeta Functions of Quadratic Fields	12
	 References: D. Burton, Elementary Number Theory, 7th ed. Tata McGraw-Hill, 2012. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 5th edition, 1979. Stopple, A primer of analytic number theory: from Pythagoras to Riemann, Cambridge University Press, 2003 R. Gupta, M. Ram Murty, A remark on Artin's conjecture, Inventiones Mathematicae, vol. 78, pp. 127-130 (1984). M.E. Harold Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory, Graduate Texts in Mathematics, Springer, 2000. 	

Syllabus

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	1
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1

Subject Code: MAT10E

Non-linear Partial Differential Equations

Credits: 4 or 5

Course Outcome (CO)

On completion of the course the students will be able to

	Course Outcome	Level
CO 1	understand the existence theory for partial differential equations	Remember Understand
CO 2	implement various methods for solving nonlinear PDEs including the method of characteristics, similarity solutions and Riemann functions	Apply
CO 3	distinguish classical solution and weak solution	Analyze
CO 4	Determine the weak solution of scalar conservation laws	Evaluate
CO 5	Develop the relation between nonlinear partial differential equations and calculus of variations	Create

Syllabus							
Units	Content	Hrs.					
Ι	Nonlinear first-order PDEs: complete integral, new solutions from envelopes; characteristics;	12					
Π	Introduction to Hamilton-Jacobi equations: calculus of variations: First variation, Euler-Lagrange Equation, second variation, Hamilton's ODE, Legendre transform, Hopf-Lax formula, weak solutions, uniqueness;	12					
III	Introduction to Conservation laws: shocks, entropy condition, Lax- Oleinik formula, weak solutions, uniqueness, Riemann's problem, long time behaviour.	12					
IV	Representation of solutions: separation of variables; similarity of solutions; transform methods: Fourier, Laplace	12					
V	Converting nonlinear PDE into ODE: Hopf-Cole transform, Asymptotics; Power series: non-characteristic surfaces, real analytic functions Cauchy-Koyaleyskaya theorem						
	 References: L.C. Evans, Partial Differential Equations, AMS, Second Edition, 2010. F. John, Partial differential equations, Fourth Edition, Springer, 1991. R. McOwen, Partial Differential Equations: Methods and Applications, Pearson Education, 2002. J.D. Logan, Applied Partial Differential Equations, Second Edition, Springer, 2004. T. Myint-U, L. Debnath, Linear Partial Differential Equations for Scientists and Engineers, Fourth Edition, Birkhauser, 2007. 						

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	0	1	0	0	1	0
CO2	1	1	1	0	1	1	1	1
CO3	1	0	0	0	1	0	1	0
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	0	1	1	1	1

Subject Code: MAT11E

Advanced Partial Differential Equations

Credits: 5

Course Outcome (CO)

On completion of the course the students will be able to

	Course Outcome	Level
CO 1	understand the theory of weak solutions	Remember Understand
CO 2	Apply the theory of functional analysis to study weak solutions of PDEs	Apply
CO 3	analyze existence, uniqueness and regularity of solutions for PDEs	Analyze
CO 4	Determine the necessary conditions for the existence of extremals	Evaluate
CO 5	Develop the relation between nonlinear partial differential equations and calculus of variations	Create

Syllabus							
Units	Content	Hrs.					
Ι	Elliptic Equation: Weak Solution, Lax-Milgram Theorem, Energy estimates, Regularity, Maximum principles	12					
П	Parabolic Equation: Weak Solution, Existence and uniqueness, Regularity, Maximum principles	12					
ш	Hyperbolic Equation: Weak Solution, Existence and uniqueness, Regularity, Propagation of disturbances	12					
IV	Calculus of variation: Basic ideas, First variation, Euler-Lagrange equation, Second variation, Systems: Null Lagrangians, Brouwer's fixed point theorem	12					
V	Existence of Minimizers: coercivity, lower semi continuity, convexity, weak solutions of Euler-Lagrange equations, systems.	12					
	 References: L.C. Evans Partial Differential Equations, Second Edition, AMS, Providence, 2010. S. Salsa Partial Differential Equations in Action: From Modelling to Theory, Springer, New Delhi, 2008. S. Kesavan Topics in Functional Analysis and Applications, New Age International, New Delhi, 2008. H. Brezis Functional Analysis, Sobolev Spaces and PDEs, Springer, New York, 2011. 						

		1						
CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	0	0	1	0	1	0
CO2	1	0	0	0	1	1	1	0
CO3	1	1	0	0	1	1	1	0
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1
Subject Code: MAT12E

Differential Geometry

Credits: 4

Course Outcome (CO) On completion of the course the students will be able to

	Course Outcome	Level
CO 1	to understand plane curves and their curvature	Remember Understand
CO 2	to understand surfaces, tangents and normals	Apply
CO 3	to understand Quadratic Surfaces	Analyze
CO 4	to understand concepts related to curvature of surfaces	Evaluate
CO 5	to be able to solve problems on these topics.	Create

Syllabus						
Units	Content	Hrs.				
I	Plane curves and Space curves- Frenet-Serret Formulae. Global properties of curves- Simple closed curves, The isoperimetric inequality, The Four Vertex theorem.	12				
Π	Surfaces in three dimensions- Smooth surfaces, Tangents, Normals and Orientability, Quadric surfaces.	12				
III	The First Fundamental form- The lengths of curves on surfaces, Isometries of surfaces, Conformal mappings of surfaces, Surface area, Equiareal Maps and a theorem of Archimedes.	12				
IV	Curvature of surfaces- The Second Fundamental form, The Curvature of curves on a surface, Normal and Principal Curvatures.	12				
V	Gaussian Curvature and The Gauss' Map - The Gaussian and The mean Curvatures, The Pseudo sphere, Flat surfaces, Surfaces of Constant Mean Curvature, Gaussian Curvature of Compact surfaces, The Gauss' Map.	12				
	 References. 1. A. N. Pressley, Elementary Differential Geometry, Springer, 2010. 2. T. J.Willmore, An Introduction to Differential Geometry, Oxford University Press, 1997. 3. D. Somasundaram, Differential Geometry: A First Course, Narosa, 2005. 					

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	1	1	0	1	1	0
CO2	1	1	0	1	1	1	1	0
CO3	1	0	0	1	1	1	1	0
CO4	1	0	1	1	1	1	1	0
CO5	1	1	0	1	0	1	1	0

Subject Code: MAT13E

Delay Differential Equations

Course Outcome (CO)

On completion of the course the students will be able to

	Course Outcome	Level
CO 1	To be able to solve simple Delay Differential Equations.	Remember Understand
CO 2	to be able to apply numerical techniques to Delay Differential Equations	Apply
CO 3	to understand infinite dynamical systems via the semi-group approach	Analyze
CO 4	to be able to apply Hille-Yosida Theorem to show existence of solutions to Delay Differential Equations	Evaluate
CO 5	to understand stability of Delay Differential Equations	Create

Syllabus						
Units	Content	Hrs.				
Ι	Review of system of ODEs, Solution of nonlinear system as given by groups of operators, stability and asymptotic stability.	15				
Π	Solution of Parabolic/hyperbolic equations as semigroups/ groups. Backward Euler method as a motivation for Hille-Yoshida theorem without proof, Existence for DDEs.	15				
III	Models involving DDEs	15				
IV	Asymptotic stability of linear DDEs	15				
	 References. J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York,1997. V. J. Arnold, Ordinary Differential Equations, Springer-Verlag, Berlin, 1982. S. Kesavan, Topics in Functional Analysis and Applications, John Wiley & Sons,1989. 					

Mapping of Program Specific Outcomes with Course Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	0	1	1	0	0	1	1	0
CO2	0	1	1	0	1	1	1	1
CO3	0	1	1	0	0	1	1	0
CO4	1	1	1	0	0	1	1	0
CO5	0	1	1	0	1	1	1	0

74

Subject Code: MAT14E

Foundations of Geometry

Credits: 4

Course Outcome (CO)

On completion of the course the students will be able to

	Course Outcome	Level
CO 1	to understand the five groups of Axioms of Geometry	Remember Understand
CO 2	to understand the compatibility and mutual independence of the Axioms	Apply
CO 3	to understand the theory of proportion	Analyze
CO 4	to understand plane areas	Evaluate
CO 5	to understand Desargues's Theorem	Create

Syllabus

Units	Content	Hrs.
Ι	The five group of Axioms	12
Π	Compatibility and Mutual Independence of the Axioms	12
III	The Theory of Proportion	12
IV	The theory of plane Areas	12
V	Desargues's Theorem	12
	References.	
	1. D. Hilbert, The Foundations of Geometry, MJP Publishers, 1902.	

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	0	0	1	0	1	0
CO2	1	1	0	0	1	0	1	0
CO3	1	1	0	0	1	0	1	0
CO4	1	1	0	0	1	0	1	0
CO5	1	1	0	0	1	0	1	0

Course Code: MAT15E

Commutative Algebra

Credit: 5

Course Outcome (CO)

On completion of the course, the student will be able to

	Course Outcome	Level
CO 1	understand the difference between vector space over a field and module over a commutative ring.	Remember & Understand
CO 2	Applying some operations, obtain a new module from old the old ones.	Apply
CO 3	Finding the fraction rings and fraction modules from given the rings and modules	Analyze
CO 4	Obtain a characterization for Noetherian A-module and Artinian A-module using submodules and the chain conditions.	Evaluate
CO 5	investigate the Hilbert's basis theorem for Noetherian ring of polynomials	Create

Syllabus						
Units	Content	Hrs.				
Ι	Commutative ring with unity, Zero-divisors, Nilpotent elements, Nilradical Jacobson radical, Modules, Module homomorphism.	12				
II	Submodules, Quotient modules, Operations on submodules, Direct sum, Finitely Generated modules, Nakayama's lemma, Exact sequences	12				
III	Rings and Modules of Fractions, local properties	12				
IV	Chain Conditions, Noetherian A-module and its characterization, Arinian A-modules and its characterization	12				
V	Noetherian rings, Hilbert's Basis Theorem, Artinian rings	12				
	 References: 1. J.W. Anderson, Hyperbolic geometry, second edition, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2005. 2. 2. L. Keen and N. Lakic, Hyperbolic geometry from a local view point, London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 2007. 					

	<u></u>							
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	1	1	1	0	1	0
CO2	1	1	1	0	1	0	1	0
CO3	1	1	1	0	1	0	1	0
CO4	1	1	1	0	1	0	1	0
CO5	1	1	1	0	1	1	1	0

Subject Code: MAT16E

Discrete Mathematics

Credits: 4 or 5

Course Outcome (CO) On completion of the course the students will be able to

	Course Outcome	Level
CO 1	to understand Recurrence Relations, formal languages and	Remember
	Grammars	Understand
CO 2	to understand symbolic logic, Posets and Lattices	Apply
CO 3	to understand Boolean Algebra	Analyze
CO 4	to apply Boolean Algebra to Switching Theory	Evaluate
CO 5	to understand Finite state machines	Create

Units	Content	Hrs.
I	Recurrence Relations and Generating Functions, Some number sequences, Linear homogeneous recurrence relations, Non-homogeneous recurrence relations, Generating functions, Recurrences and generating functions, Exponential generating functions.	12
п	Statements Symbolic Representation and Tautologies, Quantifiers, Predicates and validity, Prepositional Logic. Lattices as partially ordered sets, their properties, Lattices as Algebraic systems. Sub lattices, Direct products and Homomorphism, Some special lattices e.g. complete, Complemented and Distributive Lattices.	12
ш	Boolean Algebras as Lattices, Various Boolean Identities, The switching Algebra. Example, Subalgebras, Direct Products and Homomrphism, Joint- irreducible elements, Atoms and Minterms, Boolean forms and their equivalence, Minterm Boolean forms, Sum of Products, Cononical forms, Minimization of Boolean functions, Applications of Boolean Algebra to Switching Theory (using AND, OR and NOT gates.) The Karnaugh method.	12
IV	Finite state Machines and their Transition table diagrams, Equivalence of Finite State, Machines, Reduced Machines, Homomorphism, Finite automata, Acceptors, Non-deterministic, Finite Automata and equivalence of its power to that of deterministic Finite automata, Moore and Mealy Machines.	12
V	Grammars and Language: Phrase-Structure Grammars, Requiting rules, Derivation, Sentential forms, Language generated by a Grammar, Regular, Context -Free and context sensitive grammars and Languages, Regular sets, Regular Expressions and the pumping Lemma.	12
	 References. J.P. Tremblay and R. Manohar, A First Course in Discrete Structures with Applications to Computer Science, McGraw Hill, 1987. K.H. Rosen, Discrete Mathematics and its Applications, Seventh edition, McGraw Hill, 2011. C.L. Liu, Elements of Discrete Mathematics, McGraw Hill, New York, 1978. R.P. Grimaldi and B.V. Ramana, Discrete and Combinatorial Mathematics- An Applied Introduction, Pearson education, 2004. T. Sengadir, Discrete Mathematics, Pearson Education India, 2009. 	

6. J.E. Hopcraft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation, 2nd Edition, Addison Wesley, 2001.

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	0	1	1	1	1	1	1	1
CO2	0	1	1	1	1	1	1	1
CO3	0	1	1	1	1	1	1	1
CO4	0	1	1	1	1	1	1	1
CO5	0	1	1	1	1	1	1	1

Course Code: MAT17E

Advanced Graph Theory

Credit: 4

Course Outcome (CO)

On completion of the course, the student will be able to

	Course Outcome	Level
CO 1	understand the concept of maximum matching and perfect matching	Remember Understand
CO 2	demonstrate Euler tour and Hamiltonian cycle in graphs using a characterization of Eulerian graph properties of Hamilton graphs	Apply
CO 3	Finding a triangle free graph with arbitrarily large chromatic number	Analyze
CO 4	determine Euler formula for a planer graph in terms of its n, m, \Box	Evaluate
CO 5	Create a schedule for a tournament in a particular game using tournament of the di-connected graphs	Create

Syllabus

Units	Content	Hrs.					
Ι	Matching-maximum matching-Berge theorem in maximum matching-Hall's Theorem-Perfect matching-Tutte theorem.	12					
II	Eulerian graphs and its characterization - Vizing's theorem in edge colourings -independent sets - Gallai's theorem - Ramsey theory	12					
III	Turan's theorem - Brook's theorem in vertex colourings - Hajo's conjecture -subdivision of graphs -Mycielski's construction for triangle free graphs.	12					
IV	Kuratowski's theorem - face colouring - characterization of face colouring– Tait colouring – non hamiltonian planar graphs.	12					
V	Directed graphs - existence of directed path - tournament - disconnected tournament-Moon theorem- Networks -Max-flow min- cut theorem.						
	 References: J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, 1982. G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, Fifth Edition, CRC press, 2011. D.B. West, Introduction to Graph Theory, Second Edition, PHI Learning Private Ltd, New Delhi, 2011. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Second Edition, Springer, 2012. 						

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	0	1	0	0	1	1	0
CO2	1	1	1	0	1	1	1	1
CO3	1	1	1	0	1	1	1	0
CO4	1	0	1	0	1	1	1	0
CO5	1	1	1	0	1	1	1	0

Course Code: MAT18E

Hyperbolic Geometry

Credit: 4 or 5

Course Outcome (CO)

On completion of the course, the student will be able to

	Course Outcome	Level
CO 1	understand the models of hyperbolic plane viz., the Riemann sphere and the upper half plane	Remember Understand
CO 2	demonstrate the transitivity properties and geometry of action of the Mobius group	Apply
CO 3	distinguish hyperbolic area and ordinary area	Analyze
CO 4	find out the hyperbolic distance formula in the upper half plane and the disc	Evaluate
CO 5	investigate the trigonometry in the hyperbolic plane	Create

Units	Content	Hrs.
Ι	A model for the hyperbolic plane, Riemann sphere, boundary at infinity of the upper half plane, the group of Mobius transformations Mob ⁺ , the transitivity properties of Mob ⁺ and cross ratio.	12
Π	Classification of elements in Mob^+ , matrix representations, reflections, conformality of elements of Mob^+ , transitivity properties and the geometry of action of Mob^+ .	12
III	Paths and elements of arc-length, the element of arc-length on H , path metric spaces, arc-length to metric, formulae for the hyperbolic distance in H and isometries.	12
IV	Metric properties of (H, d_H) Poincare disc model, a general construction, convexity and hyperbolic polygons.	12
V	Definition of hyperbolic area, Gauss-Bonnet formula with applications and trigonometry in the hyperbolic plane.	12
	 References: 1. J.W. Anderson, Hyperbolic geometry, second edition, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2005. 2. L. Keen and N. Lakic, Hyperbolic geometry from a local view point, London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 2007. 	

Mapping of Program Specific Outcomes with Course Outcomes

	0							
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	0	1	1	0	1	1
CO2	1	0	0	1	1	0	1	1
CO3	1	1	0	0	1	0	1	1
CO4	1	1	0	0	1	0	1	1
CO5	1	1	0	0	1	0	1	1

Course Code: MAT21E

Credit: 4

Discrete Dynamical Systems

Course Outcome (CO)

On completion of the course, the student will be able to

	Course Outcome	Level
CO 1	appreciate the basics of topological dynamics with the help of illustrous examples. Understand that not only period three maps or chaotic, there are lot more. Using Sarkoviskii's theorem.	Remember & Understand
CO 2	discuss on the concept of attracting and repelling periodic points. Understand the theory of bifurication and understand and apply them.	Apply
CO 3	be well versed in Symbolic dynamics. Get an expertise in topological conjugacy.	Analyze
CO 4	thoroughly understand Newton's method in the perview of DDS.	Evaluate
CO 5	appreciate complex dynamics. Self similarity and Mendolbortt sets will be there favourite topics to discuss.	Create

Syllabus

	Synabas	
Units	Content	Hrs.
Ι	Orbits - Phase portraits - Periodic points and stable sets. Sarkovskii's theorem.	12
Π	Attracting and repelling periodic points - Differentiability and its implications - Parametrized family of functions and bifurcations - The logistic map.	12
III	Symbolic dynamics - Devaney's definition of Chaos - Topological Conjugacy.	12
IV	Newton's method-Numerical solutions of differential equations.	12
V	The dynamics of Complex functions - The quadratic family and the Mandelbrot set.	12
	 References Richard A. Holmgren, A First Course in Discrete Dynamical Systems, Springer Verlag (1994). Robert L. Devaney, A First Course in Chaotic Dynamical Systems, Addison-Wesley Publishing Company, Inc. 1992. 	

ə								
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	0	1	1	0	1	0
CO2	1	1	0	1	1	0	1	0
CO3	1	1	0	1	1	0	1	0
CO4	1	1	0	1	1	0	1	0
CO5	1	1	0	1	1	0	1	0

Generic Electives

Course Code: MAT01G

Credit: 4

Python for Sciences

Course Outcome (CO) On completion of the course, the student will be able to

	Course Outcome	Level	
CO 1	comfortably use Linux command line, VI editor and necessary	Remember &	
COT	basic commands of Linux. Python basics.	Understand	
CO 2	use various data types in Python for storing list of items.	Apply	
CO_{2}	write basic Python programs and functions using conditionals	Analyze	
CO 3	and loop structures.		
CO 4	write Python programs for various numerical algorithms.	Evaluate	
CO 5	work with the Numpy and Scipy libraries.	Create	

Units	Content	Hrs
Ι	Introduction to linux commands and VI Editor. Overview of installing and running Python. Python interpreter and IDLE, one more text editor GEANY. Simple commands to use Python as a calculator. Python 2.x vs Python 3.x. Variables, Statements, Getting input from the user, Functions, Modules, Running Python scripts from a Command Prompt. Strings, Concatenating strings, String representation; repr and str; input vs raw input. String Conversions; Methods S, find, join, lower, replace, split, strip, translate.	12
II	Lists, Tuples and Dictionaries; Lists S Indexing, Slicing, Adding Sequences, Multiplication, Membership, Length, Minimum and Maximum. List operations and methods. Tuple operations. Creating and using Dictionaries; Dictionary operations, String formatting with Dictionaries, Dictionary methods.	12
ш	Conditionals and Loops, Importing libraries, Assignment, Blocks, if statement, else and elif clauses, Nesting Blocks. While loops, for loops, Iteration, Breaking, else clauses in Loops. Printing and Output formatting. Format specifiers like align, sign, width, precision, type etc.,. File operations. Python shell error handling. Python exceptions: Try and Except function.	12
IV	Various programs related to basic mathematics followed by Bisection Method, Newton Raphson Method, Regula Falsi Method, Trapezoidal Rule for integra- tion, Simpsons 1/3rd rule, Euler's method for ODE, RK method of ODE etc.,	12
V	Numpy and Scipy. Obtaining Numpy and Scipy libraries. Using Ipython. Numpy basics, Array creation, Printing Arrays, Basic operations, Universal functions, Indexing, Slicing and iterating. Changing shapes, stacking and splitting of arrays. Matplotlib and plotting. Scipy: scipy.special, scipy.integrate,	12

Refer	ences:
1.	M. Dawson, Python programming for the absolute beginner, 3 rd Edition, Course Technology, 2010.
2.	K.V. Namboothiri, Python for Mathematics Students, Version 2.1, March2013.
3.	(https://drive.google.com/openid=0B27RbnD0q6rgZk43akQ0MmRX NG8).
4.	Numpy tutorial - https://www.numpy.org/devdocs/user/quickstart.html
5.	Beginner's Guide to matplotlib - https://matplotlib.org/users/beginner.html
6.	Scipy tutorial - https://docs.scipy.org/doc/scipy/reference/tutorial/index.html

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	0	1	1	0	1	1	0	1
CO2	0	1	1	0	1	1	0	1
CO3	0	1	1	0	1	1	0	1
CO4	0	1	1	0	1	1	0	1
CO5	0	1	1	0	1	1	0	1

Course Code: MAT02G

Game Theory

Credit: 4

Course Outcome (CO) On completion of the course, the student will be able to

	Course Outcome	Level
CO 1	To study Real vector spaces and linear transformations on these spaces.	Remember & Understand
CO 2	To apply Linear programming and the theory of duality for the linear programs.	Apply
CO 3	To analyze the Simplex method, its working principle and using the algorithm to find the optimal of both primal and dual problems.	Analyze
CO 4	To understand Two person zero-sum matrix games, existence Nash equilibrium/optimal strategies for such games.	Evaluate
CO 5	To apply Iterated Elimination of Dominated Strategies(IEDS) procedure on a matrix game. To formulate the problem of finding Nash equilibrium as a linear program and compute the optimal strategies using simplex method.	Create

Units	Content	Hrs.
Ι	Linear algebra: vectors, scalar product, matrices, linear inequalities, solution of linear equations, real vector spaces of finite dimensions, linear transformations.	12
II	Convex sets and polytopes, convex cones, extreme vectors and extreme solutions for linear inequalities.	12
III	Linear programming: Example problems, formulation of linear programming problem, primal and dual problem; simplex method and its variations for solving linear programming problems, duality theorem.	12
IV	Two-person games: Examples, definitions and elementary theory; solutions of games, pure and mixed strategies, value of the game and optimal strategies; saddle point and minimax theorem; symmetric games; proof of fundamental theorem of games.	12
V	Solutions to matrix games: Relation between matrix games and linear programming; solving games by the simplex method; optimal strategies and solutions.	12
	 References: 1. D. Gale, The Theory of Linear Economic Models, Mc Graw-Hill Book Company, London, 1990. 2. V. Chvatal, Linear Programming, W. H. Freeman and Company, 1983. 	

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	1	1	1	1	1	0
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1

Subject Code: MAT03G

History of Mathematics

Credits: 3

Course Outcome (CO)

On completion of the course the students will be able to

	Course Outcome	Level	
CO 1	Know the of contributions to mathematics by different ancient and	Remember	
COT	modern civilizations	Understand	
CO 2	To know about the development of Euclidean and non-Euclidean	Apply	
	Geometry		
CO 3	To appreciate the contribution of Indians in the fields of	Analyza	
03	Mathematics	Analyze	
<u> </u>	To develop gender sensitiveness by learning about the	Evoluato	
004	contributions of woman mathematicians	Evaluate	
CO 5	To appreciate the traditional knowledge of Astronomy by Indian	Create	

	Syllabus						
Units	Content	Hrs.					
Ι	Development of Euclidean Geometry and Non-Euclidean Geometries	12					
Π	The Stories of $\frac{1}{4}$, <i>e</i> and <i>i</i> .	12					
Ш	Mathematics in Different Cultures (with special emphasize on Indian Astronomy).	12					
IV	Study of Kanakkathikaram and Lilavathi.	12					
V	Development of Modern Mathematics.	12					
	References.1. G.G. Joseph, Crest of the peacock, Third Edition, Princeton University Press, Princeton, 2011.						

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	0	0	1	0	1	0	1	0
CO2	0	0	1	0	1	0	1	0
CO3	0	0	1	0	1	0	1	0
CO4	0	0	1	0	1	0	1	0
CO5	0	0	1	0	1	0	1	0