

Syllabus for Integrated M. Sc. (Physics) Program – 2021 - 2023 To be implemented from 2021 Batch onwards Department of Physics School of Basic and Applied Physics Central University of Tamilnadu Thinuvarur

Central University of Tamil Nadu, Thiruvarur

Department of Physics School of Basic and Applied Sciences

Syllabus

Integrated M.Sc Physics (2021-2023)

1.Preamble

The Department of Physics, CUTN was established in the year 2009 with the establishment of the five-year Integrated Masters in Science (Physics) program with a sanctioned strength of 30. There were 17 students in the first batch (2010-2015). A panel of national experts framed the initial structure of the IMSc Program. The aim of the IMSc program was an emphasis on strengthening core-competence in Physics while allowing the students to gain exposure to various other fields from sciences and humanities, thus giving a meaning to the integrated Masters title of the program. A panel of eminent faculty mentored the department until 2012, when the department saw the first set of permanent faculty occupy their positions. With them came the opening of the PhD program in 2013. Right from the inception, to date, invited-faculty, guest-faculty and contractual faculty members have ably supported the department of Physics. Right now the department is having 10 permanent faculty members, who are well trained in National and International Laboratories. They have established a strong research collaboration with the leading Institutions around the world.

The Department of Physics will focus on the following research areas: Computational Condensed Matter Physics, Experimental Condensed Matter Physics, Soft Condensed Matter Physics, Nonlinear dynamics, Statistical Mechanics, Computational Quantum Physics, Simulation of Liion battery materials, Modelling of nanophase materials for energy technologies, Design advanced functional materials for solar cell, Semiconductors, Thin films & nanostructures, Experimental High Energy Nuclear and Particle Physics, Atomic, Molecular and Optical Physics (Experimental) and Gravitation & Theoretical Cosmology.. Five-Year Integrated M. Sc. Programme in Physics applies scientific methodologies to understand the most fundamental principles of nature: matter and energy, and how they interact. Energy can take the form of mechanical energy, light energy, electrical energy, radiation energy and sound energy. Physics deals with matter on scales ranging from sub-atomic to stars and even entire galaxies. In this sense, Physics answers questions about universe and the way elements of universe interact to compose natural phenomena.

As well as being concerned with deep fundamental questions, physics forms the basis of most present and future technology like computers, cell phones, lasers and the internet. The Integrated M. Sc. Physics Programme at CUTN aims to train the students in high level theoretical knowledge enabling them to tackle practical complex problems in industrial fields as well as to pursue further academic achievements through research. Since Mathematics, Physics, Chemistry and Life Sciences are fundamental courses in sciences, students will be taught a mix of all these four subjects during the first two years.

The Department of Physics is well-equipped to offer hands-on training in state-of-the-art experiments as par with International standard. After successful completion of fundamental courses, a student will take up core courses in physics. In addition to the core physics subjects, the students can acquire additional expertise in special area of physics in the final year. During this period, all possible opportunities will be created for close interaction with research institutes and industries so as to provide high level training. Thus the main objective of this program is to prepare the younger generation to cope with the emerging scenario in the top level industries, academic and research institutions.

2. Eligibility

A Pass in the Plus two examination or equivalent of any recognized board in India with 60% marks (Physics, Mathematics & Chemistry) for General Category, 55% marks for OBC (Non-creamy layer) and 50% marks for SC/ST/PWD candidates.

3. Vision of the Department

Vision Statement of the Department

The Department of Physics of CUTN envisages itself to be a center of excellence in basic and applied aspects of Physics, both in teaching and research, in next 20 years

4. Mission statements

M1	To establish a world class Department of Physics while being sensitive to the location of the University and the demographics of the student input.
M2	To establish a world class research laboratory with cutting edge technology in multi and trans disciplinary areas of Physics and to train students to develop the high level of global competence in core/ Applied areas of Physics.
M3	To collaborate with Institutes of eminence and Industries for enhanced learning experience through ICT integrated teaching-learning process.

5. Program Outcomes (PO) Integrated Masters Program in Physics

On the successful completion of the program, the student will be able to

PO1	Apply the knowledge gained in fundamental and applied Physics in solving scientific problems at varied complexity, analyze the same to formulate/ develop
	substantiated solutions.
	Apply the research based knowledge and advanced method to design new
PO2	experiments, analyze resulting data and interpret the same to provide valid
	conclusions.
	Gain broad understanding of ethical and professional skill in scientific applicationsin
DO3	the context of local, global, economic, environmental and societal realities and to
P03	develop sustainable practical solution for academic and research problems
	within professional and ethical boundaries.
	Educate scientifically the new development in Science and Technology and make
PU4	them critical thinker and innovator.
	Engage in independent and lifelong learning in the broadest context of
PO5	technological change and pursue his/her carrier either in higher studies or job in
	various sectors.

6. Specific Outcomes (PSO)

PSO1	Develop and establish advance knowledge and apply theories and principles of Physics/Applied Physics in the domain of industry, research and development.
PSO2	Successfully acquiring jobs after pursuing research in advanced laboratories around the glo0be and build perform as professional teachers in Physics and other science disciplines.
PSO3	Provide the professional services to industry, research organisation and institutes in India and overseas.
PSO4	Develop, create and apply appropriate techniques, resources and relevant IT tools to find complex scientific solutions related to academic and research activities with clear understanding of its advantages and limitations.
PSO5	Provide value based and ethical leadership in the professional and social life.

7. Graduate Attributes

- 1. Disciplinary/ interdisciplinary knowledge;
- 2. Computational and ICT skills/ digital literacy.
- 3. Communication skills.
- 4. Ethics/ moral awareness.
- 5. Problems solving/ Analytical/ reflective thinking.
- 6. Critical thinking
- 7. Cooperation/ team work.
- 8. Self-directed learning.
- 9. Research related skills.

8. PSO to Mission Statement Mapping

	PEO1	PEO2	PEO3	PEO4	PEO5
M1	X	Х	Х	Х	Х
M2	X	Х	Х	Х	Х
M3	X	Х	Х	Х	Х

9. PO to PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6
PSO1	X	Х	X	Х	Х	Х
PSO2	X	Х	X	Х	Х	Х
PSO3	X	Х	Х	Х	Х	Х
PSO4	Х	Х	Х	Х	Х	Х
PSO5	Х	Х	Х	Х	Х	х

10. Programme structure

Course Code	Course Title	Type (Core / DSE/SEC/ AECC/AU	Theory /Practical/Lab	L:T:P	Total Credits
		SEMESTER - I			1
PHY111	Mechanics	Core	Theory		3
PHY112	Physics Laboratory- I	Core	Practical		2
		SEMESTER - I	I		
PHY121	Waves, Oscillations, Sound and Optics	Core	Theory		3
PHY122	Physics Laboratory –II Wave,Oscillations, Sound, and Optics	Core	Practical		2
	-	SEMESTER - II	Ι		
PHY211	Heat and Thermodynamics	Core	Theory		3
PHY212	Physics Laboratory- III	Core	Practical		2
		SEMESTER - I	V		
PHY221	Electricity and Magnetism	Core	Theory		3
PHY222	Physics Laboratory - IV Electricity and Magnetism	Core	Practical		2
		SEMESTER - V	7		
PHY311	Mathematical Physics I	Core	Theory		4
PHY312	Classical Mechanics	Core	Theory		4
PHY313	Morden Physics & Relativity	Core	Theory		4
PHY314	Physics Laboratory-V Morden Physicss	Core	Practical		2
PHY351	Numerical Methods and Computer programming	DSE	Theory		4

PHY352	Computational	DSE	Practical	2
DUV271	Laboratory- 1 Mashina shan	SEC	Theory	
PH13/1	Wachine shop	SEC SEMESTED - V	/ T	
	Mathematical Drysia	Com	Theorem	
PHY321	II	Core	Ineory	4
PHY322	Quantum Mechanics I	Core	Theory	4
PHY323	Electro Magnetic Theory	Core	Theory	4
PHY324	Condensed Matter Physics - I	Core	Theory	4
PHY325	Condensed Matter Physics - Lab	Core	Practical	2
PHY326	Minor Project	Core	Project	6
PHY0E15	Introduction to Nonlinear Dynamics	Elective	Theory	4
PHY0E32	Astrophysics	Elective	Theory	4
PHY0E02	Semiconductor Physics	Elective	Theory	4
		SEMESTER -	VII	
PHY411	Quantum Mechanics II	Core	Theory	4
PHY412	Atomic and Molecular Physics	Core	Theory	4
PHY413	Statistical Mechanics	Core	Theory	4
PHY414	Atomic physics and optics lab	Core	Practical	2
PHY451	Electronics	DSE	Theory	4
PHY452	Electronics Lab	DSE	Practical	2
		SEMESTER -	VIII	
PHY421	Modern Optics	Core	Theory	4
PHY422	Nuclear and Particle Physics	Core	Theory	4
PHY461	Laser Physics	DSE	Theory	4
PHY462	Laser Physics Laboratory	DSE	Practical	2
PHY463	Experimental Methods and Design	DSE	Theory	4
PHY464	Experimental Techniques Lab	DSE	Practical	2
		SEMESTER ·	· IX	
PHY511	Condensed Matter Physics-II	Core	Theory	4
PHY551	Computational Physics	DSE	Theory	4
PHY552	Computational Laboratory- II	DSE	Practical	2
PHY571	Advanced Physics Laboratory	SEC	Practical	2
PHYS01	Physics of art	General Elective	Theory	2

Elective

PHY0E01	Solar Energy and its application	Elective	Theory	4
PHY0E02	Semiconductor Physics	Elective	Theory	4
PHY0E03	Properties of Material	Elective	Theory	4
PHY0E04	Physics of material and synthesis	Elective	Theory	4
PHY0E15	Introduction of Nonlinear	Elective	Theory	4
PHY0E23	Advanced Electro magnetic theory	Elective	Theory	4
PHY0E29	Nano material and Nano technology	Elective	Theory	4
PHY0E30	Physics of magnetism and spintronics	Elective	Theory	4
PHY0E32	Astrophysics	Elective	Theory	4
PHY0E33	Plasma Physics	Elective	Theory	4
PHY0E34	Classical Field theory	Elective	Theory	4

11. Evaluation Scheme

Components	Weightage (%)
(Internals I & II	40
End Semester Exams	60

12. Syllabus

12.1 Course Content

Semester - I

Course Co	ode:PHY111	Theory	Credits 3			
Course Ti	tle: MECHANICS PHY111					
Unit -1	Fundamentals of Dynamics: Reference fram	nes, Inertial frames,	Hours*			
	Galilean transformations, Galilean invarian	ce, Review of Newto	on's			
	Laws of Motion. Momentum of variable ma	ass system: motion o	f 9			
	rocket. Dynamics of a system of particles. I	Principle of conserva	tion			
	of momentum, energy. Impulse. Determina	tion of Centre of Ma	ss of			
	discrete and continuous objects having cyli	ndrical and spherical				
	symmetry (1-D, 2-D & 3-D). Conservative	and non- conservativ	/e			
	forces. Phase space diagram for one dimensional systems, Stable,					
	unstable and neutral equilibrium. Force as gradient of potential					
	energy. Work energy theorem, Work done by non-conservative					
	forces. Collisions: Elastic (1-D and 2-D) and inelastic collisions.					
	Centre of Mass and Laboratory frames.					
Unit -2	Rotational Dynamics: Angular momentum of a particle and system					
	of particles. Torque. Principle of conservation	on of angular momen	ıtum.			
	Rotation about a fixed axis. Moment of in	ertia, theorem of par	rallel			
	and perpendicular axes. Determination of	of moment of inertia	ia of			

	discrete and continuous objects [1-D, 2-D & 3-D (rectangular,				
	cylindrical and spherical)]. Kinetic energy of rotation. Motion				
	involving both translation and rotation. Non-Inertial Systems:				
	Non-inertial frames and fictitious forces. Uniformly rotating				
	frame.Centrifugal force. Coriolis force and its applications.				
Unit -3	Gravitation and Central Force Motion: Law of gravitation.	9			
	Gravitational potential energy. Inertial and gravitational mass.				
	Potential and field due to spherical shell and solid sphere.				
	Motion of a particle under a central force field: Two-body problem,				
	its reduction to one- body problem and its solution. Reduction of				
	angular momentum, kinetic energy and total energy. The energy				
	equation and energy diagram. Derivation of Kepler's Laws and				
T T 1 / 4	elliptical orbits. Satellite in circular orbit, Geosynchronous orbits.	0			
Unit -4	Oscillations: Idea of SHM. Differential equation of SHM and its	9			
	solution. Kinetic energy, potential energy, total energy and their				
	time-average values. Compound pendulum. Damped oscillation.				
	Forced oscillations: Transient and steady states, snarpness of				
	Tesonance and Quanty Factor.	0			
Unit -5	Fluid statics, Pressure and density, Buoyancy, Archimede's	9			
	principle, Introduction to surface tension, Derivation and				
	applications of Hydrostatic equation Free surface energy, excess				
	pressure – application to spherical, cylindrical drops and bubbles,				
	Variation of surface tension with temperature – Jaegar's method,				
	Fully for security, Fully security and Navier strokes equation for fluid flow				
	Bernoulli s theorem -applications. Fluid friction and coefficient of				
	viscosity. Poiseuilles equation for incompressible fluids: Stokes				
	law: terminal velocity.effect of temperature on viscosity: Revnolds				
	number				
	Tasks and Assignments:				
	-				
	References:				
	1. An Introduction to Mechanics (2/e), Daniel Kleppner & Robert K	olenkow.			
	2. Mechanics Berkeley Physics Course, Vol. 1, 2/e: Charles Kitt	el, et. al.,			
1	(MaCrow Hill)				

	Course Outcome	Level
CO 1	Define terms in Mechanics such as force, potential energy, work done and write the Newton laws of motion for various forces.	Remember
CO 2	The concept of elastic & inelastic collisions, motion under a central force, idea of simple harmonic motions, and relativistic mechanics.	Understand
CO 3	Apply the Kepler's laws to planetary motions and ideas of Coriolis force and solve problems related to it.	Apply
CO4	Analyze the motion of particles under various types of forces and the simple harmonic motion including damping and forced oscillations	Analyze
CO5	Solve problems related to Newton's equations of motion, central forces, and Special theory of relativity.	Skill

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark			\checkmark	\checkmark
CO2	\checkmark	\checkmark		\checkmark	\checkmark
CO3	\checkmark			\checkmark	\checkmark
CO4	\checkmark	\checkmark		\checkmark	\checkmark
CO5	\checkmark			\checkmark	\checkmark

Course Co	ode: PHY112	Practical	Credits: 2
Course Ti	tle: Physics Laboratory-I (Mechanics)		
	List of Experiments		
	Preliminary experiments		
	(a) Vernier calipers		
	(b) Screw gauge		
	(c) Physical Balance.		
	(d) Travelling Microscope Core ex	periments	
	1. Young's modulus – cantilever bending		
	2. Young's modulus –Koenig's Method		
	3. Torsional Pendulum		
	4. Verification of Hooke's law		
	5. Projectile motion		
	6. Conservation of momentum		
	7. Conservation of energy		
	8. Archimedes principle		
	9. Centripetal force		
	10. Measurement of surface tension using c	apillary rise method	
	Tasks and Assignments:		
	1. Virtually executing the experiment	S	
	2. Observation submission		
	3. Viva-Voce		
	4. Practical Examination		

References:

- 1. Virtual labs, <u>https://www.vlab.co.in/</u>
- 2. An Introduction to Mechanics D. Kleppner and R.J. Kolenkow (Tata McGraw-Hill)
- 3. Mechanics K. R. Symon (Addison-Wesley).
- 4. Mechanics and General Properties of Matter D. P. Roychaudhuri and S. N. Maiti(Book Syndicate).

Course Outcomes

	Course Outcome	Level
CO 1	Students can understand the basics of mechanics and its working principles	Understand
CO 2	Students can execute those experiments virtually	Virtual
CO 3	Students can utilize the technology to do the experiments	utilizing
CO4	Students can do this practical experiments with various options which is not available do physically	experimental
CO5	Students can develop their self-knowledge to think for the innovative ideas for the virtual experiments	Research

Mapping of Program Outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5
CO1					
CO2					
CO3	X		X	X	
CO4		X			
CO5					X

Semester –II

Course co	de:PHY121	Theory	Credits 3
Course T	itle: Waves, Oscillations, Sound and		
Optics			
Unit -1	Simple harmonic motion; damped and for	ced vibrations: ampl	itude Hours
	and velocity resonance. Linearity and	Superposition Prince	ciple.
	Superposition of two collinear oscillations	having equal freque	ncies
	and different frequencies (Beats). Superpos	ition of two perpendi	cular 10
	Harmonic oscillations, Superposition of N	N collinear Harmoni	c
	Oscillations, coupled harmonic oscillators.		
Unit -2	Transverse vibrations in stretched strings, W	Vave equation in the l	inear
	approximation - Speed, Energy of trans	sverse vibrations, L	inear
	equation of plane progressive wave motion in one dimension; wave		wave 10
	propagation - group velocity and phase velocity; Traveling waves,		aves,
Wave speed, Power and intensity in wave motion, Interference of			ce of
	sound waves, Stationary waves.		
Unit -3	Sound waves as pressure fluctuations, sp	peed of sound wave	es in
	liquids, solids and gases, Sound intensity	y, decibel scale; mu	isical
	sound and noise, characteristics of musical sound: Loudness, noise,		oise, 10
quality and intensity; standing sound waves and normal modes,		odes,	
	interference and beats, The Doppler effect; shock waves; velocity of		ty of
	sound and its measurement, factors affecting the speed of sound;		ound;
	ultrasonic and infrasonic waves.		

Unit -4	Nature and propagation of light, Reflection, Refraction, Fermat's principle, Images, Plane mirrors, Spherical mirrors, Spherical refracting surfaces, Lenses, Defects of images, Spherical and Chromatic aberrations; Achromatism of two thin lenses separated by a distance; Stops, Prisms: dispersion, minimum deviation.	11
Unit -5	Electromagnetic nature of light; definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence. Introduction to Interference and Diffraction.	4
	 References: 1. The Physics of Vibrations and Waves, H. J. Pain (John Wiley & Sou 2. Waves: Berkeley Physics Course Vol. 3, F. S. Crawford (McGraw H Education) 3. University Physics with Modern Physics, Sears & Zemansky's (Adw Wesley-Pearson) 4. Optics, Ajoy Ghatak (McGraw Hil) 5. Fundamentals of Physics, Halliday & Resnick (Wiley) 	ns Ltd.) Hill dison-

	Course Outcome	Level
CO 1 Understanding essential concepts of oscillations which serve as a foundation to solve many difficult problems areas of Physics.		Understand Skill
CO 2	Learning basic concepts of various waves.	
CO 3	Understanding the origin, properties and application of sound waves.	Understand Apply
CO4	Enabling to understand the principle to build optical instruments.	Apply Skill
CO5	Introduction to the wave nature of light.	Understand

	PO1	PO2	PO3	PO4	PO5
CO1			\checkmark	\checkmark	\checkmark
CO2				\checkmark	\checkmark
CO3	\checkmark			\checkmark	\checkmark
CO4	\checkmark	\checkmark		\checkmark	\checkmark
CO5				\checkmark	\checkmark

Course Co	Course Code: PHY122,		Credits: 2
Course Ti	tle: Physics Laboratory-II (Waves,		
Oscillation	ns, Sound, and Optics)		
	List of Experiment		
	1. Simple pendulum and Compound pendulum		
	2. Resonance air column and water column		
	3. Newton's rings		
	4. Sonometer		
	5. Focal length 'f' of lenses		
	6. Angle of prism and minimum deviation of solid prism		
	7. Diffraction using grating.		
	8. Air wedge.		
	9. Angle of prism and minimum deviation of liquid prism		
	Tasks and Assignments:		
	1. Virtually executing the experiments		

2. Observation submission
3. Viva-Voce
4. Practical Examination
References:
1. Virtual labs, <u>https://www.vlab.co.in/</u>
2. David Halliday, Robert Resnick and Jearl Walker (2004) Fundamentals of Physics. 7 th edition. John Wiley & Sons. 8th Ed. (2008).
 F. W. Sears, M. W. Zemansky, and H D Young, University Physics, Addison Wesley (1976).
4. Optics, Ajoy Ghatak, Fourth Edition (2009), Tata McGraw Hill.

	Course Outcome	Level
CO 1	Students can understand the basics of Wave, Oscillations, Sound, and Optics and its working principles	Understand
CO 2	Students can execute those experiments virtually	Virtual
CO 3	Students can utilize the technology to do the experiments	Utilizing
CO4	Students can do this practical experiments with various options which is not available do physically	Experimental
CO5	Students can develop their self-knowledge to think for the innovative ideas for the virtual experiments	Research

Mapping of Program Outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5
CO1					
CO2					
CO3	X		X	X	
CO4		X			
CO5					X

Semester -III

Course co	de:PHY211	Theory	Credits 3			
Course Ti	Course Title: Heat and Thermodynamics					
Unit -1	Thermal equilibrium and notion of tem	perature; Zeroth la	w of Hours			
	thermodynamics; Thermometers and tempe	rature scales: Celsiu	s and			
	Fahrenheit scales: Heat conduction, therma	l conductivity, Deriv	ation 9			
	of Maxwell's law of distribution of velocit	ies for ideal gases. M	1ean.			
	RMS and Most Probable Speeds, Collisions	s and mean free path.	Law			
	of equipartition of energy and its applications to specific heat of					
	or equipartition of energy and its applications to specific heat of					
Unit -2	Transport Phenomena: Viscosity Con	duction and Diffu	sion.			
01111 -2	Behavior of Real Gases: deviations from	the Ideal Gas Equa	stion,			
	Andrews Experiments on CO2 Car Continuity of Limit and					
	Andrew's Experiments on CO2 Gas, Continuity of Liquid and					
	Gaseous State; van der Waal's Equation of State for Real Gases.					
	critical temperature, critical pressure and c	ritical volume; The V	Virial			
	Expansion, discussion about various equati	ons of state.				

Unit -3	Extensive and intensive thermodynamic Variables, Thermodynamic Equilibrium, Zeroth Law of Thermodynamics and Concept of Temperature, Concept of Work and Heat, State Functions, Internal Energy, First Law of Thermodynamics, Various Thermodynamical Processes, Applications of First Law: General Relation between C _P and C _V , work done in isothermal and adiabatic Processes, Compressibility and Expansion Co-efficient	9
Unit -4	Reversible and Irreversible processes, Heat Engines, Refrigerators, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot"s Theorem. Entropy, Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes. Temperature–Entropy diagrams for Carnot's Cycle. Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale. Third Law of Thermodynamics, Unattainability of Absolute Zero	10
Unit -5	Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations and applications: Joule-Thompson Effect, Clausius- Clapeyron Equation, Ehrenfest equations. T-dS equations. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions. Introduction to Statistics of particles: Maxwell-Boltzmann, Bose- Einstein and Fermi-Dirac Statistics (qualitative).	8
	 References: 1. <i>Heat and thermodynamics</i>, Zemansky and Ditman (Mc Graw Hill) 2. <i>Thermal Physics</i>, S. C. Garg, R. M. Bansal and C. K. Ghosh (Tata I Hill Education Private Ltd.) 3. <i>A Treatise on Heat</i>, Saha and Sribastava (The Indian Press Ltd.) 4. <i>Fundamentals of Statistical and Thermal Physics</i>, F. Reif (McGraw Book Company) 5. Heat and Thermodynamics – H. P. Roy and A. B. Gupta (Books & Ltd.) 	McGraw 7 Hill Allied

	Course Outcome	Level
CO 1	Understanding thermal equilibrium, concept about heat and temperature. Learning heat transfer mechanisms. Learning how to relate quantitatively heat transfer into work done using the first law of thermodynamics	Understand Apply
CO 2	Understanding the second and the third law of thermodynamics as well as their applications.	Understand Apply
CO 3	Learning about thermodynamic potentials and their application in various processes including phase transitions.	Understand Apply
CO4	Learning how to relate the macroscopic properties of a system to its microscopic properties using kinetic theory.	Understand Apply Skill
CO5	Understanding how the interactions at the molecular level determine the thermal properties of the substance.	Understand Apply

	PO1	PO2	PO3	PO4	PO5
C01	\checkmark	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark	\checkmark		\checkmark

CO3	\checkmark	\checkmark			
CO4	\checkmark	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark	

Course Code	e: PHY21	2	Practical	Cred	lits 2
Course Title	e: Physic	es Laboratory- III (Heat and			
Thermodyna	amics lab				
Pi	reliminar	ry experiments: An introduction	to the subject		Hours*
Te	emperatu	re of mixing - mix hot and cold	water - note their init	ial	
an	nd final te	emperature - try and predict the f	inal temperature		6
	1. Galt	ton's board			
	2. Th	ermometry - Measuring tempera	ture using different		
	the	rmometers such as (a) alcohol (b) mercury (c) IR (con	ntact	
	less	s) (d) digital (e) min-max (f) dry-	-wet (for humidity)		
	3. Pl	ace a cube of ice on three differe	ent black colored boa	rds -	
	one made of metal, one of wood and one of plastic -				
	qualitative concepts of specific heats and thermal				
conductivity					
Core Experiments					30
	1. Newton's law of cooling				
	2.	Pressure coefficient of air - Joly	y's bulb		
	3.	Thermal conductivity of a good	l conductor - Searle's		
	me	thod			
	4.	Thermal conductivity of a bad	conductor - Lee's me	thod	
	5.	Specific heat by method of mix	tures		
	6.	Verification of Stefan-Boltzma	nn law		
	7. Latent heat of steam/ice				
	8.	Verification of Boyle's law			
	9.	Seeback effect and thermocoup	le		
	10.	Mechanical equivalent of heat			

	Course Outcome	Level
CO 1	Understand notion of heat, randomness and temperature using different systems	Understand
CO 2	Illustrate different thermodynamics concepts by employing various experiments.	Apply
CO 3	Compare and examine the experimental result with theoretical predictions.	Analyze
CO4	Arrange for the experiment, Demonstrate and Verify the Hypothesis.	Skill

General Objectives	Specific Objectives
Remember retrieval of Information	List, Name, Define, Identify, Recall, Recognize,
Remember - retrieval of miormation	Tabulate, State, Repeat
Understand – demonstration of	Translate, Interpret, Extrapolate, Define in your
comprehension	Own words, Differentiate, Cite example, Relate,
1	Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish

Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark			\checkmark	\checkmark
CO2	\checkmark	\checkmark		\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark		\checkmark	\checkmark

Semester- IV

Course C	ode: PHY221	Theory	Credits			
Course T	itle: Electricity and Magnetism		3			
Unit -1	Electrostatics: Brief recap of vector analysi	s, Coulomb's law,	9 Hours			
	Electric field, Divergence and curl of electric	ric field, electrostatic				
	potential, dipole,; principle of superposition, relation between					
	electric field and potential; Electric field an	d potential of differe	ent			
	charge configurations such as, rings, discs,	planes, spheres,				
	Earnshaw's theorem, equipotential surface	S				
Unit -2	Electrostatic energy, Basic concept of cond	luctor and induced	9 Hours			
	charge, Conductors in an electrostatic field	. Surface charge and				
	force on a conductor. Capacitance of a syst	em of charged				
	conductors. Parallel plate capacitor, capacit	tance of an isolated				
	conductor. Dielectrics, Polarisation, Displa	cement vector. Gauss	S'S			
	theorem, electrical susceptibility, permittiv	ity and dielectric				
	constant, energy in dielectric system. Meth	od of Images and its				
TI I I O	application to plane infinite sheet of charge	and charged sphere.				
Unit -3	Magnetostatics: Biot-Savarts law, magnetic field due to a straight, 9 Hours					
	circular conductor and solenoid, force betw	een parallel conduct	ors,			
	Amper's law, Lorentz force, Faraday's laws	s of electromagnetic	1.			
	induction, Lenz's law, self and mutual inductance. Energy stored in					
	magnetic field, measurement of magnetic permeability and					
	susceptibility, basic ideas of para, ferro – and diamagnetism, cycle					
In:t 1	of magnetization, hysteresis, energy loss due to hysteresis.					
Unit -4	Kirchoff' lowe conservation theorems and	their applications:	law, 9 Hours			
	Norton and Theyanin theorem maximum r	their applications,	m			
	Wheatstone bridge moving coil galvanome	oters ballistic	,			
	galvanometer Ammeters and Voltmeter	lers, bamstie				
Unit -5	Alternating currents: A C Resonance circu	its – RC IC and RI	C 9 Hours			
Unit -5	circuits Phasor representation and Ω factor	· Impedance of serie				
	and parallel resonant circuits. Introduction to Maxwells's equations					
	in vacuum					
	Tasks and Assignments:					
	References:					
	1) Introduction to Electrodynamics, D	J Griffiths.				
	2) Brijlal and Subramaniam, "Electric	ity and Magnetism",				

3)	Electronic principles,	A. Malivino D. Bates
----	------------------------	----------------------

	_	_	
4)	Electricity an	d Magnetisn	n, Satya Prakash

Course Outcomes			
	Course Outcome	Level	
CO 1	Coulomb's law, Gauss law, Stoke's theorem, Earnshaw's theorem, Ampere's law, , Faraday's law, Lentz's law, Lorentz' law, Biot-Savart Law, Ohm's law, Kirchoff's law, Norton and Thevenin theorem	Remember	
CO 2	Vector analysis, electric field and potential, magnetic field and potential, dielectric medium, capacitance, magnetism, self and mutual inductance, circuit analysis, alternating current circuits, Maxwell's equation.	Understand	
CO 3	To find out the electric field and potential for different charge configurations, method image to find electric field and potentials, Use Biot-Savart Law to find magnetic field for different configurations of current carrying conductor, solving different circuit problems using circuit theorem, solving series and parallel a.c circuit having resistance, inductance and conductance.	Apply	
CO4	Applying vector analysis to solve problems of electricity and magnetism, using different laws and theorems of electrostatisc and magnetostatics to solve electricity and magnetism problems, to use this to basic knowledge for studying Electrodynamics.	Skill	

	PO1	PO2	PO3	PO4	PO5
CO1	1	1	1	1	
CO2	1	1	1	1	
CO3	1	1	1	1	
CO4	1	1	1	1	

Course Co	ode: PHY222,	Practical	Credits: 2
Course Ti	tle: Physics Laboratory- IV (Electricity and		
Magnetis	n)		
	Preliminary experiments:		
	1. Mapping of electrical field lines for different	charges and cha	rge
	configurations.		
	2. Mapping of magnetic field lines using a bar r	nagnet and	
	compass/iron filings		
	3. Lenz's Law – take two identical copper pipes	s – drop a steel b	all
	and a magnet – magnet will take much longer to	o fall	
	4. Shielding of Magnetic fields by different mat	terials using a ra	re
	earth magnet and gauss meter		
	Core experiments:		
	1 Verification of Kirchoff's laws		
	2. Resonance in LCR Circuits and Transient res	sponse of resonal	nt
	circuit		
	3. Conversion of Voltmeter to Ammeter. And a	mmeter to Voltn	neter
	4. Hysteresis curve		
	5. Measurement of Average Resistance of a Wi	re by Carey-Fos	ter
	Method and hence to determine the Value of U	nknown Resistar	ice
	6. Charging and Discharging a Capacitor		

7. Determination of the Moment of a Bar Magnet and the Horizontal
Component of Earth's Magnetic Field by Magnetometers
8. Comparison of EMF of cells using by potentiometer.
. Determination earth magnetic field using by tangent galvanometer
and determination of reduction factor of given tangentgalvanometer.
10. Kelvin double bridge
11. Verification of Network Theorems (Thevenin, nortans and super
position theorem)
12. construction of passive filters (low pass, Band pass)
Tasks and Assignments:
1. Virtually executing the experiments
2. Observation submission
3. Viva-Voce
4. Practical Examination
References:
1. Virtual labs, <u>https://www.vlab.co.in/</u>
2. Brijlal and Subramaniam, "Electricity and Magnetism", Ratan Prahasan
Mardis Educational and University Publishers, Delhi, 1990
3. Jacob Millman and Christos C Halkias, "Electronic Devices and Circuits",
Tata McGraw Hill Edition, 1991.

	Course Outcome	Level
CO 1	Students can understand the fundamentals of electricity and magnetism	Fundamental
CO 2	Students can execute those experiments virtually	Virtual
CO 3	Students can utilize the technology to do the experiments	Utilizing
CO4	Students can do this practical experiments with various options which is not available do physically	Experimental
CO5	Students can develop their self-knowledge to think for the innovative ideas for the virtual experiments	Higher study

Mapping of Program Outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5
C01	X				
CO2					
CO3			X	X	
CO4		X			
CO5					Х

Semester-V

Course Course Ti	ode: PHY 311 tle: MATHEMATICAL PHYSICS - I	Theory	Credits 4	
Unit -1	Functions of real variables, features of a fun	ction, sketching func	tions Hou	ırs
	functions using the concepts of calculus.	als, interpreting gra	1	0
	Functions represented by integrals - error function, complementary			
	error function, Fresnel integral, Gamma fun	ction, Gaussian integ	ral in	
	1, 2 and 3 dimensions, step function θ , Dirac delta function - Defining			
	relation, sequences of function tending to δ -	function, relation bet	ween	
	θ and δ function, properties of Dirac delta	a function, derivative	of δ	

	function.	
Unit -2	Ordinary and partial Differential Equations: Linear ordinary differential equations –	14
	Elementary methods – Linear second order differential equations with variable coefficients –	
	Frobenius method wronskian physical example. Method of forming partial differential	
	equations – Solution by direct integration – Method of separation of variables – Partial	
	differential equations in physics problems – Wave equation – Equation of vibrating string –One dimensional heat flow – Two dimensional heat flow – Laplaceequation.	
Unit -3	Linear Vector Spaces and its dual, Linear Dependence and Independence of vectors, Basis and Dimensions, Infinite dimensional vector space- Hilbert space, subspace, Rank and Nullity of a Matrix, Examples from Real Function Space and Polynomial Space, Orthogonal Vectors, Orthogonal Basis, Gram- Schmidt process of generating an Orthonormal Basis, Change of basis. Linear Transformations. Representation of Linear Transformations by Matrices. Hermitian and Skew- Hermitian Matrices. Orthogonal and Unitary Matrices. Similar Matrices. Inner Product. Properties of Eigen- values and Eigen Vectors of Orthogonal, Hermitian and Unitary Matrices. Exponential of a Matrix.	16
Unit -4	Cartesian Tensor: Transformation of co-ordinates, Einstein's summation convention, Tensors, Algebra of Tensors: Sum, Difference and Product of Two Tensors. Contraction, Quotient Law of Tensors, Symmetric and Anti-symmetric Tensors, Kronecker and Alternating Tensors. Application of cartesian tensor: Vector Algebra and calculus using Cartesian Tensors: Scalar and Vector Products, Gradient, Divergence and Curl of Tensor Fields. Vector Identities.	12
Unit -5	Group Theory: Definition of group symmetry elements homomorphisms; isomorphism; Subgroups and cyclic groups; Cosets; Abelian groups, Reducible and irreducible representation – Character table;	8
	Tasks and Assignments: References:	
	1. Mathematical methods for physicists: G.B.Arfken, Hans Webber	
	2 Mathematical methods for physics and engineering: K.F.Riley, M.P.Hobs	on et. al.

	Course Outcome	Level
CO 1	To get an idea of functions used in most of the physical systems, their basic properties and behaviour. Acquire the skill to get qualitative features of functions which can be used while analysing solutions of a physical problem.	Remember, Understand,Skill

CO 2	Learn to translate physical situation into mathematical equations, find out solutions of the mathematical equations, analyze and interpret the solutions	Apply, Evaluate, Analyse, Skill
CO 3	To learn the abstract way of defining quantities like space, dimensionality of spaces etc which can be applied in various branches of physics.	Understand, Apply
CO4	Learn the technique of tensor notation	Skill
CO5	Application of tensor notation in analysing various physical systems.	Apply, Analyse

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a newcontext	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come tonew conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
C01	\checkmark	\checkmark	\checkmark		
CO2	\checkmark	\checkmark	\checkmark		
CO3	\checkmark	\checkmark	\checkmark	\checkmark	
CO4	\checkmark	\checkmark			
CO5	\checkmark	\checkmark			

Course Code: PHY 312 Course Title: CLASSICAL MECHANICS		Theory	Credits 4
Unit -1	Langrangian Formulation		
	System of particles, Newtonian mecha	anics, classification	of
	constraints - degrees of freedom - g	eneralized coordina	ites- 12
	conservation of linear and angular momenta	a- D'Alemberts princ	ple

	of virtual work- Lagrange's equation of motion – applications of	
	Lagrange's equation of motion –applications of Lagrange equations	
	of motion; single particle in space-Atwood's machine-bead sliding	
	in rotating wire - Kepler's problem- Spherical Pendulum,	
	generalized momenta, Routh's procedure, symmetry properties and	
	conservations theorems, one and higher dimensional harmonic	
	oscillator.	
Unit -2	Hamilton Principle	12
	Calculus of variation – Liouville theorem-Hamilton's principle –	
	derivation of Lagrange's equation from Hamilton's principle -	
	Hamilton's principle for nonholonomic system-variational principle	
	– Legendre transformation and Hamilton's equations of motion –	
	cyclic coordinates and conservation theorem – Hamilton's equations	
	from variational principle –principle of least action–Solving the	
	Harmonic Oscillator problem using canonical transforms-	
	Application of Hamiltonian Equation of motion: (i)	
	simple pendulum, (ii) Compound pendulum (iii) Two dimensional	
	Isotropic Harmonic oscillator, (iv) Linear Harmonic oscillator, (v)	
	Particle in central field of force-Canonical transformations- angular	
	momentum using Poisson brackets- Jacobian Identity - Generating	
	functions –Examples – Poisson brackets and its properties	
Unit -3	Small Oscillations	12
	Small oscillations of dynamical systems, equilibria and derivations,	
	frequencies of free vibrations and normal coordinates and normal	
	modes; motion of masses connected by springs –vibrations oflinear	
	triatomic molecule.	
Unit -4	Kinematics of Rigid Body	12
	Independent coordinates of rigid body – orthogonal transformation	
	- properties of transformation matrix - Euler angles and Euler's	
	theorem – infinitesimal rotation –rate of change of vector – Coriolis	
	force – angular momentum and kinetic energy of motion about a	
	point – moment of inertia tensor – Euler's equations of motion –	
	torque free motion of a rigid body –heavy symmetrical top.	
Unit -5	Hamilton –Jacobi Theory	12
	Hamilton-Jacobi equation for Hamilton's Principle function-	
	Example; Harmonic oscillator problem- Hamilton's characteristic	
	function – Action – angle variable in systems of degree of freedom-	
	application of angle of action to Kepler problem and simple	
	harmonic oscillator.	

	Course Outcome	Level
CO 1	To gain deeper understanding of the classical mechanics principles such as constraints, generalised coordinates, D'Alemberts principle, Lagrangian and Hamiltonian formulations and also describing the basics of one and higher dimensional harmonic oscillators.	
CO 2	To be able to formulate and solve the problems on canonical transformations, Poisson brackets, Jacobi identity and Harmonic oscillators.	

CO 3	To understand and apply problems based on Theory of small oscillations, normal modes and frequencies.	
CO4	To understand the motion of rigid body and other advanced mathematics in the solution of the problems of mechanical systems. Describe and understand the motion of the forces in non- inertial systems.	
CO5	To solve Hamilton Jacobi equation and action angle variables in systems of degree of freedom and its application to Kepler problem and harmonic oscillator.	

	PO1	PO2	PO3	PO4	PO5
CO1		\sim	\sim		
CO2					
CO3					
CO4			\sim		
CO5					

Course Co Course Ti	ode- PHY 313 tle: Modern Physics and Relativity	Theory	Cred	its 4
Unit -1	Planck's quantum, Planck's constant and photons; Photo-electric effect and Compto wavelength and matter waves; Davisson- C quantization rule and atomic stability; calcu hydrogen like atoms and their spectra, Sterr spin.	light as a collection on scattering. De Br Bermer experiment. E Ilation of energy leve n- Gerlach experiment	on of roglie Bohr's Is for at and	Hours 12
Unit -2	Wave-particle duality, Heisenberg uncertainty principle, Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle. Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude.			12
Unit -3	Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of wavefunction, probabilities and normalization; Probability and probability current densities in one dimension. One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization, Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential herrior			
Unit -4	Size and structure of atomic nucleus and its weight; Impossibility of an electron being i consequence of the uncertainty principle. N NZ graph, semi-empirical mass formula and	relation with atomic n the nucleus as a ature of nuclear force d binding energy.	e,	8
Unit -5	Special Theory of Relativity: Outcomes of Experiment. Postulates of Special Theory of Transformations. Simultaneity, Length com Relativistic transformation of velocity, acce wave number. Mass of relativistic particle. Mass-energy Equivalence. Relativistic Dop and longitudinal). Relativistic Kinematics (Michelson-Morley f Relativity. Lorentz traction, Time dilatio eleration, frequency a Mass-less Particles. pler effect (transvers decay problems, inel	on. Ind e astic	16

collisions and Compton effect). Transformation of Energy and	
Momentum.	

	Course Outcome	Level
CO 1	To emphasise the important of various experiments that lead to the development of quantum mechanics	Remember, Understand
CO 2	Concept of wave-particle duality, the uncertainty principle and its application, importance of superposition principle	Remember, Understand
CO 3	Plausibility arguments leading to Schrodinger equation (SE), wave functions and probabilistic interpretation, Conditions for a valid wave function, concepts stationary states. Solve SE for some simple systems.	Understand, Apply
CO4	Give the idea of atomic scale, application of uncertainty principle, idea of radioactivity and various decay process	
CO5	Idea of molecular scale and give the glimpse of solid state physics	Remember, Understand

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark	\checkmark	\checkmark	

CO2	\checkmark	\checkmark	\checkmark	\checkmark	
CO3	\checkmark	\checkmark	\checkmark	\checkmark	
CO4	\checkmark	\checkmark	\checkmark	\checkmark	
CO5	\checkmark	\checkmark	\checkmark	\checkmark	

Course Code.	:PHY314	Practical	Cre	dits 2
Course Title:	Physics Laboratory –V (Modern			
Physics)				
1	Millikan's Oil Drop Method			Hours
				3
2	Rydberg Constant			3
3	Balmer – Emission Spectra			3
4	Frank –Hertz Experiment			3
5	Zeeman Effect			3
6	e/m by Thomson method			3
7	Electron Spin Resonance			3
8	Compton Effect			3
9	Black body radiation			3
10	Photoelectric effect			3

	Course Outcome	Level
CO 1	Study the properties of electrons, photons, and electron-photon interactions	
CO2	Experimental basis of the Quantum Theory of Matter	Understand
CO3	Verification of properties of electrons like charge, e/m ratio, existence of spin	Apply
CO4	Distinguish between theoretical predications & experiment measurements	Analyse
CO5	Hands-on experience with experiments in modern physics and collection of data	Apply

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

PO4 **PO1 PO2 PO3 PO5** ✓ ✓ ✓ ✓ ✓ ✓ CO1 \checkmark CO2 CO3 \checkmark ✓ ✓ \checkmark CO4 CO5 ✓ ✓ √ √ ✓ ✓ \checkmark \checkmark

Course C	ode: PHY351	Theory	Credits	
Course T	itle: Numerical Methods and Computer		4	
program	ning			
Unit -1	Different number system-decimal, binary, octal, hexadecimal,			
	Number representation in computer, Appre	oximations and roun	d off	
	errors: Significant digits, true/absolute and	truncation errors, T	aylor ¹²	
	Series – Taylor polynomial error formula. Determination of roots of			
	polynomials and transcendental equations: Bisection methods,			
	Newton-Raphson method, Secant method	l and Bairstow's me	thod.	
	Solutions of linear simultaneous linear alge	braic equations by C	Bauss	
	Elimination and GaussSeidel iteration me	thods.		
Unit -2	Backward, Forward and Central difference	relations and their us	ses in 12	
	Numerical differentiation and integration,	Application of differ	rence	
	relations in the solution of partial differen	tial equations. Nume	erical	
	solution of ordinary differential equations	by Euler, Modified E	Euler.	
	Runge•Kutta and Predictor•Corrector meth	od.	,	
Unit -3	Numerical integration: midpoint rule.	trapezeoidal me	thod. 12	
0	Simpson's method Newton•Cotes method	d Gaussian rules L	inear	
	interpolation: Vandermonde polynomial	method (Direct met	hod).	
	Newton polynomial and Lagrange 1	nethod Least so	uares	
	approximation Curve fitting:• fitting data to a straight line fitting			
	data to linear combinations of functions Goodness of a fitting. Chi-			
	square test			
Unit -4	UNIX commands aditors (a g vi gadit) Arithmetic avpressions			
0mt -4	Concepts of variables expressions or	, Antimietie express	grom	
	concepts of variables, expressions and statements, program			
	data types a int abar float ata avpression	nary (printi 101 examples and another	rions	
	relational and logic operations. Assignmen	t statemente estensi	lions,	
	relational and logic operations. Assignment	t statements, extensi		
	assignment to the operations. Statements, conditional execution using			
TI	I, else. Optionally switch and break statem	ents may be mention		
Unit -5	Branching of a program – branch, loop, co	nditional loops. Con	cepts 12	
	of loops, example of loops in C using f	or, while and do-•v	vhile,	
	continue. One dimensional arrays and examples of iterative programs			
	using arrays, 2•d arrays. Use in matrix computations. Concept of Sub•			
	programming, functions. Example of func	ctions. Argument pa	ssing	
	mainly for the simple variables. Pointers, re	lationship between a	rrays	
	and pointers. Argument passing using po	inters. Array of poin	nters,	
	Passing arrays as arguments. GNU-plotting	tor data visualisatio	n.	

	Course Outcome	Level
CO 1	Number system, Unix commands, program syntax and numerical techniques.	Remember
CO 2	Taylor series expansion, Root finding methods, numerical methods to solve linear and differential equation, curve fitting and plotting	Understand
CO 3	The theoretical procedure of various root finding methods and finding solutions for linear differential equations in computer programs and solve numerical problems. GNU plot for data visualization.	Apply
CO4	Skill to solve numerical problems using computer programs and use of different programming techniques for efficient programs.	Skill

Mapping of Program Outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5
CO1	1	1	1	1	
CO2	1	1	1	1	
CO3	1	1	1	1	
CO4	1	1	1	1	

Course Co	Course Code: PHY352 Practical Credi				
Course Ti	Course Title: Physics Laboratory VI 2				
(Computational Physics- I)					
1.	(Any language: C/C++/Python)				
	Environment walkthrough (Editor, Unix co	mmands), primitive			
	types, assignment, arithmetic expressions, s	simple I/O.			
2.	Find values of: (i) sin x, (ii) cos x, (iii) exp(x) considering their series expansion				
3.	Add, multiply and find inverse of a given (3x3) matrix				
4.	Find the roots of a given quadratic equation by using any one: Bisection methods, Newton-Raphson method, Secant method and Bairstow's method				
5.	Solve the given three simultaneous equations by elimination method.				
6.	Solve first order, homogeneous, linear differential equation				
7.	Solve numerical integration problem by (any two methods): trapezoidal method, Simpson's method, Gaussian rules.				
8.	Design of Class in C++ (optional), GNU Plotting: plot standard and user defined functions. Fit a straight line or a parabolic curve to a given set a data				

	Course Outcome	Level
CO 1	Unix commands, program syntax	Remember
CO 2	Passing of arguments, arithmetic operations, use of inbuilt and user-defined functions, program control	Understand
CO 3	To solve numerical problems using function methods, array, pointer and plotting	Apply
CO4	Skill to solve numerical problems using computer programs and use of different programming techniques for efficient programs.	Skill

Mapping of Frogram Outcomes with Course Outcomes					
	PO1	PO2	PO3	PO4	PO5
C01	1	1	1	✓ ✓	
CO2	1	1	1	1	
CO3	1	1	1	✓	
CO4	1	1	1	1	

Mapping of Program Outcomes with	h Course Outcomes
----------------------------------	-------------------

Course C Course T	Code: PHY371 Title: Machine shop	Practical	Credits: 2
Part A:	 Lines and Lettering Scales and paper sizes Title blocks Basic instruments used a) T-square b) Set-square c) Parallel rules d) Drafting Machine Axonometric projections a) Dimetric projection b) Isometric projection c) Orthographic projection a) First angle projection c) Third angle projection 		
Part B:	 Introduction to machine tools Safety aspects in machine shop Milling Turning Shaping Filing Keyway/slot/groove making Surface/slot milling 		

R.K. Dhawan, "A text book of Engineering Drawing", S. Chand Publishers, Delhi,2010.
 G.S. Phull and H.S.Sandhu, "Engineering Graphics", Wiley Publications, 2014.
 K.Venugopal and V.Prabhu Raja, "Engineering Graphics", New Age International Private

Limited, 2008.

4. P.J.Shah, A Text Book of Engineering Graphics, S.Chand & Company Ltd.

	Course Outcome	Level
CO 1	Technical understanding and broaden perspective of the engineering drawing and manufacturing/ machining techniques.	Remember
	Safety practices when working with hand tools and operating machine tools.	
CO 2	Understand the concepts of Engineering Drawing & Standard Practice to be adopted in Engineering Drawing and use of various machining tools. Understand integral parts of lathe, shaping and milling machines and various accessories and attachments used.	Understand

CO 3	Hands on experience and skills for various cutting, turning operations, milling operations, forging and welding.	Apply
CO4	Analyze, identify/control appropriate process parameters and possible defects of manufacturing processes so as to reduce/ remove them.	Analyse
CO5	Enhancing the skills in machining operations like cutting, filing, turning, milling and welding. Skills in Reading and Interpretation of Engineering Drawings	Skill

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark		\checkmark	
CO2	\checkmark		\checkmark		
CO3	\checkmark	\checkmark	\checkmark	\checkmark	
CO4	\checkmark	\checkmark	\checkmark	\checkmark	
CO5	\checkmark	\checkmark	\checkmark	\checkmark	

Semester - VI

Course Co Course Ti	ode: PHY321 tle: MATHEMATICAL PHYSICS - II	Theory	Credits 4
Unit -1	Complex Numbers and their Graphical	Representation. E	uler's Hours
	formula, De-Moivre's theorem, Roots Functions of Complex Variables. Analytic	of Complex Num city and Cauchy-Rien	nbers. 12
	Equations. Examples of analytic functions	s. Sequence and seri	es of

	functions, convergence tests, absolute and uniform convergence, Taylor and Laurent series, analytic continuation	
Unit -2	Singularities: poles, removable singularity, essential singularity, branch points, branch cut. Integration of a function of a complex variable. Cauchy's Integral formula. Simply and multiply connected region. Residues and Residue Theorem. Application of Contour Integration in solving Integrals. Evaluation of inverse Laplace transform using counter integration	12
Unit -3	Special Functions: Legendre, Hermite, Laguerre function – Generating function, Recurrence relations and their differential equations Orthogonality of eigenfunctions Bessels's function of first kind , Spherical Bessel function, Associated Legendre function, Spherical harmonics.	12
Unit -4	 Fourier series, orthogonality of functions, Dirichlet conditions. Application: Summing of Infinite Series. Fourier integral theorem, Fourier transform, Parseval's identity, convolution theorem, transform of derivates, Fourier transforms of simple function occurring in physical application. Laplace Transform (LT) of Elementary functions. Properties of LTs- Change of Scale, Shifting. LTs of Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to 2nd order Differential Equations, Coupled differential equations of 1st order. 	14
Unit -5	Probability and statistics: Independent and dependent events, Conditional Probability. Bayes' Theorem, Independent random variables, Probability distribution functions, special distributions: Binomial, Poisson and Normal, moment generating functions, central limit theorem, maximum likelihood, confidence intervals for Normal distribution.	10

	Course Outcome	Level
CO 1	To get an idea of complex variables and its uses in physical problems.	Remember, Understand,Skill
CO 2	Learn the techniques of Fourier Series and Fourier transform	Understand, Skill
CO 3	To apply the idea of Fourier Series and transform in various branches of Physics, Chemistry, Finance etc.	Understand, Analyze, Apply
CO4	Learn Laplace transformation technique and its application	Understand, Analyze, Apply
CO5	Learn statistical methods and techniques	Skill

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your ownwords, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a newcontext	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come tonew conclusions	Assemble, Construct, Develop, Formulate, Propose,Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark	\checkmark		
CO2	\checkmark	\checkmark	\checkmark	\checkmark	
CO3	\checkmark	\checkmark	\checkmark	\checkmark	
CO4	\checkmark	\checkmark	\checkmark	\checkmark	
CO5	\checkmark	\checkmark	\checkmark	\checkmark	

Course Code: PHY 322 Course Title: Quantum Mechanics - I		Theory	Credits 4
Unit -1	 Basic principles of quantum mechanics, Properties of Wave Function. Interpretation of Wave Function: Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Position, momentum and Energy operators; Expectation values of position and momentum. Time dependent Schrodinger equation and dynamical evolution of a quantum state; Wave Function of a Free Particle, Fourier transforms and momentum space wavefunction; Position-momentum uncertainty principle. 		ction. Hours* nrent bility 12 sition ation inger ction space
Unit -2	Abstract formulation of Quantum Mechan notation, linear vector spaces, Orthonormali Matrix representation of operators, ba momentum representations – connection	nics: Dirac's bra an ty, completeness, clo asis sets. Position with wave mecha	d ket 12 osure, and anics.

	Commuting operators. Generalised uncertainty principle. Change of basis and unitary transformation. Expectation values. Ehrenfest theorem.	
Unit -3	Generators for energy, linear and angular momentum; time independent and dependent Schrodinger equation, one dimensional potential problems: Particle in a box, Potential barriers, Tunneling. Linear harmonic oscillator: wave function approach and operator approach. Motion in three dimensions. Spherically symmetric potential problem. Orbital angular momentum operators, Spherical harmonics.	12
Unit -4	Quantum Dynamics: Schrodinger picture. Heisenberg picture. Heisenberg equation of motion. General view of symmetries and conservation laws. Symmetries in Quantum Mechanics: Hydrogen- like atoms and spherical harmonics. Density matrices: properties, pure and mixed density matrices, expectation value of an observable in terms of density matrix, time-evolution.	12
Unit -5	Angular Momentum: Commutation relations of angular momentum operators. Eigenvalues, eigenvectors. Raising and lowering operators and their matrix representations. Spin, total angular momentum; angular momentum algebra; Spin-orbit coupling: L-S and j-j coupling.	12

	Course Outcome	Level
CO 1	Understand basic concepts of Quantum mechanics,	Remember, Understand
CO 2	Develop the abstract formulation of quantum mechanics and connection with wave mechanics.	Apply, Understand
CO 3	Applying the Quantum mechanics concepts to solve one, two and three dimensional problems.	Apply
CO4	General view of symmetries and conservation laws Quantum Mechanics	Understandand Apply
CO5	Concept of spin and angular momentum algebra.	Understand, Apply, Analyse

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve

Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark		\checkmark		
CO2	\checkmark	\checkmark	\checkmark		
CO3	\checkmark	\checkmark	\checkmark	\checkmark	
CO4	\checkmark	\checkmark			
CO5	\checkmark	\checkmark			

Course Co	ode: PHY323	Theory	Credits 4
Course Ti	tle: ELECTROMAGNETIC THEORY		
Unit -1	Special techniques for solving electrostatics	s problems – Recap o	of Hours*
	Coulomb's law, Gauss law, method of imag	ges, Laplace and Pois	sson
	equation, uniqueness theorem. Maxwell's e	equations in vacuum	and 12
	media, (differential and integral forms), wa	ve equation, Equatio	n of
	continuity of current, Displacement current	, Poynting vector, en	ergy
	density in electromagnetic field		
Unit -2	Vector and Scalar Potentials, multipole ex	xpansion (also as sp	ecial 12
	technique for electrostatics). Gauge Trans	formations: Lorentz	and
	Coulomb Gauge. Poynting's Theorem and	l Poynting's Vector.	EM
	Energy Density. Physical Concept of Elect	tromagnetic Field Er	nergy
	Density, Momentum Density and Angu	lar Momentum Der	isity.
	Review of Special Theory of Relativity and application of EMT, four		
	vectors, transformation properties of E and	B fields	
Unit -3	Wave equation – Electromagnetic waves	in vacuum and m	atter, 12
	monochromatic plane waves, plane waves	and their propagati	on –
	reflection and transmission and Snell's la	w, Fresnel's equation	ons, ,
	total internal reflection, waves in conducto	rs – skin depth, refle	ction
	at a conducting surface, absorption and dispersion, frequency		
	dependence of permittivity, Cauchy's form	iula,.	
Unit -4	Waveguides, resonant cavities and optical f	ibers, cylindrical cav	rities 12
	and waveguides, TE, TM and TEM modes,	cut-off wavelength	in a
	rectangular waveguide; Q factor of a cylind	lrical resonant cavity	;
	Introduction to optical fibers – single mode	and multimode;	
	numerical aperture and angle of acceptance	e. Step index and gra	ded
	index fibers, attenuation in fibers, couplers	and connectors, fibe	r

	optic communications.	
Unit -5	Relativistic charged particle dynamics in EM fields, motion of	12
	charged particle in uniform static electric field, uniform static	
	magnetic field and crossed E and B fields. Lenard – Weichart	
	potential, radiation from localized oscillating charge, multipole	
	expansion, dipole radiation	
Course O	utcomes	•

Course o	Autcomes	
	Course Outcome	Level
CO 1	Define terms in Electrostatics, Magnetostatics and Electromagnetism. Recall Maxwell's equations.	Remember
CO 2	The concept of Electromagnetic fields, forces and potentials. Interpret the various boundary conditions.	Understand
CO 3	Apply the concepts of electromagnetism to guided waves and fiber optics.	Apply
CO4	Analyze the motion of a charged particle under relativistic conditions and the radiation thus produced.	Analyze
CO5	Solve numerical problems related to electromagnetism, plot the field diagrams in free space and in guided waves.	Skill

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark				
CO2	\checkmark	\checkmark	\checkmark	\checkmark	
CO3	\checkmark	\checkmark	\checkmark	\checkmark	
CO4	\checkmark	\checkmark		\checkmark	
CO5	\checkmark	\checkmark	\checkmark	\checkmark	

Course Co Course Ti	ode: PHY324 tle: Condensed Matter Physics-I	Theory	Cred	lits 4
Unit -1	Chemical Bonding & Crystal Physics			Hours*
	Different types of bonding ionic, covalent, and hydrogen bondeing, Lattice energy - M	metallic, van der W ladelung constants –	'all's. Born	12

	Haber cycle – cohesive energy. Crystalline and amorphous solids, primitive and unit cells, Bravais lattices, crystal structure, lattice and basis. packing factors – cubic, hexagonal, diamond structures Lattice translation operation. Elementary idea of point symmetry operations (inversion centre, rotation and reflection symmetry). lattice planes – Miller indices for directions and planes. Reciprocal lattice. Geometrical interpretationof the Bragg equation in the reciprocal space. Bragg's law and Bragg's law, Ewald's construction, Debye Scherer method, Structural characterization using XRD.	
Unit -2	Lattice Dynamics and Phonons Lattice Vibrations: Vibration modes of continuous medium; concept of Phonons; Phonon dispersion relation – Localised modes, Lattice specific heat; Mono atomic and diatomic lattices – harmonic approximation - phonon frequencies and density of states Classical theory, Einstein's theory and Debye's theory of specific heat.– anharmonic effects - thermal expansion - thermal conductivity - normal and Umklapp processes - scattering experiments.	12
Unit -3	The Free Electron Theory Thermionic emission , work function , electrical conductivity of the free electron gas: Classical free electron theory (Drude model) and its draw back; Drude Lorentz Model, Sommerfield's quantum theory. the heat-capacity of the conduction electrons (Electron Specific heat).: Schrodinger's wave equations and its applications in particle in box; Physical significance of wave function;. Thermal conductivity in metals - Boltzmann transport theory - Widemann-Franz law and its validity. Failure of the free electron model.	12
Unit -4	Energy Bands in Solids Electrons in periodic potential, Origin of energy bands in solids, classification of solids as metals , insulators and semiconductors on the basis of the band picture, Origin of the energy gap, Bloch's theorem in one dimension, nearly free electron approximation - formation of energy bands and gaps - Brillouin zones and boundaries - the Kronig-Penney model. E-K diagram , Reduced zone representation ,Brillouin zone ,concept of effective mass and holes, Fermi- Dirac distribution function, Density of states for electrons in band. temperature dependence of Fermi energy, Concept of holes and effective mass; Hall Effect, Fermi surface -Cyclotron resonance. Types of semiconductors: intrinsic and extrinsic semiconductors.	12

Unit -5	 Magnetism, Dielectrics & Superconductivity Electron spin and magnetic moment; Origin of magnetism; Types of Magnetism: Dia, para, ferro, ferri, and antiferromagnetism; Langevin theory of Dia and paramagnetism, Curie's law; Magnetic domains & hysteresis, Magnetic materials, Magnetic storage devices, Memory materials. Concepts of dielectrics, Dipole moment; Basic concepts and types of polarization, A.C. effects, Ferroelectricity, Piezo electricity, Ferro and piezo electric materials. Superconductors' critical parameters – anomalous characteristics persistent current, Meissner effect, Type-I & II super- conductors, BCS pairing mechanism Josephson effect, electronic specific heat in superconducting state - Energy gap and Isotope effect -London equation – Coherence length – Single particle tunneling - SQUID - High temperature superconductors - applications. 	12
	Tasks and Assignments:	
	 Books recommended: 1. Elementary solid state physics, M.Ali Omar – Pearson Education (2) 2. Charles Kittel.," Introduction to Solid State Physics", John Wiley, (2) 3. Neil W.Ashcroft and N. David Mermin, Solid State Physics, India e Thomsom books, Reprint, 2007 4. S. O. Pillai," Solid state physics", New age International Pvt Ltd, 64 2005 5. Wahab, M. A.," Solid State Physics", Narosa Publishing, 2nd Edition 6. Solid State Physics - D. L. Bhattacharyya (Calcutta Book House) (1) 	2002) 2019) edition IE, th edition, on, 2005 990)
	 Supplementary Reading: 7. Harald Ibach and Hans Lueth, Solid State Physics, 2nd edition Sprin 8. H.P.Myers, Introductory Solid State Physics, 2nd edition, Viva Bool (1998) 9. M.Ali Omar, Elementary Solid State Physics, revised printing Pears Education (2000) 10. M.S. Rogalski and S.B. Palmer, Solid Statae Physics, Gordon Breac Publishers (2000) 11. Y.K. Lim, Problems and solutions on Solid State Physics, World Sc (2003) 12. A.J.Dekkar, Electrical Engineering Materials, Pearson Ed.1, 2015 13. Ibach, Harald, Lüth, Hans, Solid State Physics: An Introduction to pr Materials Science", Springer, 4 Ed (2009). 14. James D. Patterson, Bernard C. Bailey, Solid State Physics: Introduction theory", Springer-Verlag, edition 3, 2019 15. A.R.Verma and O.N.Srivastava: Crystallography Applied to Sol Physics (1991) 	ger (1996) ks Pvt. Ltd son ch Science cientific inciples of ction to the id State

	Course Outcome	Level
CO 1	To get knowledge about various aspects of chemical bonding and understand the formation of solids with various crystal structures and symmetries. Apply the knowledge to resolve the crystal structure of solids through XRD and structural characterization tools.	Acquire, Understand, Apply, Skill
CO 2	Understand the concept of phonons and their role on specific heat of solids. Apply the knowledge to analyze the phonon dispersion relation for simple solids. Gain insight into the origin of thermal conductivity, thermal expansion though phonon scattering processes.	Remember, Evaluate, Analyse, Skill
CO 3	Understand the electron dynamics in metals through simple concepts and apply it to understand electronic and thermal conductivity in solids. Gain knowledge about wave functions and apply the electronic heat capacity, Hall effect etc.	Remember, Understand, Analyse, Apply
CO4	Analyse the electron dispersion relation in periodic potential and understand the origin of electronic bands. Distinguish insulators, semiconductors, and metals through their band structure and density of states. Explain Hall effect, effective mass, electronic specific heat etc. through band picture.	Acquire, Understand, Apply, Skill
CO5	Gain knowledge about the origin of magnetism, ordering of magnetism, and various theory involved in understanding magnetism in solids. Understand the concept of electronic polarization and its role on piezoelectricity and ferroelectricity. Analyse the role of electron phonon coupling on superconductivity and understand various aspects of superconductivity includinghigh Tc superconductors.	Understand, Analyse Apply,

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize

	Arrange for the experiment, Experiment,
Skill	Demonstrate, Verify the Hypothesis, Draw,
	Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark		\checkmark	\checkmark
CO2	\checkmark	\checkmark			\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark			\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Course Code:	РНҮ325	Practical	Credits 2
Course Title:	Physics Laboratory VII (Condensed		
Matter Physic	s)		
1	Calculation of Unit cell parameters using	ng X-ray diffraction	Hours
	method		3
2	Guoy's Balance experiment for the determination of		3
	susceptibility of solids		
3	Determination of dielectric permittivity of solids		3
4	Hall effect		3
5	Measurement of thermal diffusivity		3
6	Measurement of DC/AC conductivity of solid samples		3
7	Determination of band gap of a solid/semiconductor		3
8	Study of solar cell characteristics		3
9	9 Thermal and Electrical conductivity of metals		
10	Experimental analysis of flat plate collector of solar water		3
	heater		

	Course Outcome	Level
CO 1	Identification of crystal structure of solids	Remember
CO2	Prediction of the thermal and electrical properties of solids and explanation of their origin	Understand
CO3	Estimation of band gap, charge carriers type and carrier concentration in solids	Apply
CO4	Demonstration of Dielectric and DC/AC conductivities of insulators	Analyse
CO5	Able to convert solar energy into electrical and thermal energy	Apply

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
---	--
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark			
CO2	\checkmark	\checkmark		\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark	
CO4	\checkmark	\checkmark	\checkmark		
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Course C	ode: PHY411	Theory	Credits 4
Course Ti	tle: Quantum Mechanics II		
Unit -1	Approximation methods for stationary s	ystems : Time –	Hours*
	independent perturbation theory : (a) Non-	degenerate and (b)	
	Degenerate perturbation theory, application	n to Zeeman effect, fi	ne 12
	structure, helium atom and anharmonic osc	illator, Isotopic shift	and
	Stark effect, WKB approximation, Variatio	nal method and their	
	applications.		
Unit -2	Time-dependent perturbation the	ory:, Time-deper	ndent 12
	perturbation theory, Transition to a cont	tinuum of final stat	tes –
	Fermi's Golden rule. First order correction	- Semiclassical radi	ation
	theory, interaction between electromagn	etic wave and ator	ns –
	transition probabilities - radiation field quar	ntization, polarizabil	ity of
	a system, Photo-electric effect, Einstein's	s coefficients – sele	ction
	rules for harmonic oscillator and hydrog	en atom Adiabatic	and
	sudden approximations. Spontaneous emission, absorption, induced		
	emission, dipole transitions, selection rules.		
Unit -3	Symmetries: Construction of wave fun	ctions for a system	n of 12
	identical particles. Bosons and Fermion	is: symmetric and	anti-
	symmetric wave functions: Pauli princip	le. Symmetry- Gal	ilean
	invariance: Translation and Rotation opera	tion: Parity and time	2
	reversal; Wave function for time, space trai	nslation and rotation:	
Unit -4	Scattering: Non-relativistic scattering, solu	ution of scattering	12
	problem by the method of partial wave ana	lysis, optical theorem	ı.
	Scattering Amplitude - Expression in terms	of Green's Function	n –
	Born approximation and its validity for sca	ttering problems	-
	Interaction with classical radiation fields.	avleigh scattering -	
	Scattering theory- Scattaring cross section	Phase Shifts - Scatte	ring
	by coulomb and Yukawa Potential.	These shirts South	

Unit -5	Relativistic Quantum Mechanics: Dirac equation: Motivation for Dirac equation, Properties of Dirac matrices, positive and negative energy states, Plane wave solution of Dirac equation. Spin of Dirac particle - Spin wave function of Dirac particle and Magnetic moment. Introduction to Quantum Field Theory, Second Quantization of Schrodinger Equation.12
	Tasks and Assignments:
	References:
	3. Mathews P M and Venkatesan K, "A Text book of Quantum Mechanics",
	Tata Mc Graw- Hill, New Delhi. 1976.
	4. J. J. Sakurai, Modern Quantum Mechanics, Pearson Education, 2005.
	5. Liboff, Introdunctory Quntum Mechanics, Narosa Publishing House.
	6. Quantum Mechanics – Zettli

	Course Outcome	ΙονοΙ
	Course Outcome	Level
CO 1	Finding the energy levels of quantum systems subject to time independent perturbations.	Understand
CO 2	Applying the concept of time dependent perturbation theory to study atom-light interactions.	Apply
CO 3	Analyze the quantum scattering of identical particles and find the cross section for scattering.	Analyze
CO4	Solve problems related to perturbation theory, identical particles, and scattering theory in quantum mechanics.	Skill

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
C01	\checkmark			\checkmark	\checkmark
CO2	\checkmark			\checkmark	\checkmark
CO3	\checkmark			\checkmark	\checkmark
CO4	\checkmark			\checkmark	\checkmark

Course C	ode: PHY412	Theory	Credits 4
Course Ti	tle: Atomic and Molecular Physics		
Unit -1	Atomic units, Schrödinger equation of one	e electron system: le	ength Hours
	and energy scales for its applicability,	Solution of the an	gular
	equation: spherical harmonics, angular	momentum, mag	netic 12
	moment of atoms, Stern-Gerlach experin	nent, space quantiza	ition;
	Solution of the radial equation: ener	gy quantization, r	adial
	distribution function, Expectation values, Various angular		
	momentum basis states of hydrogen atom	n, Spectral lines, Sp	ecial
	hydrogenic systems: muonium, positroniun	n, Rydberg atoms.	
Unit -2	Fine structurs of Hydrogen atom, Welton-	Weisskopf model fo	or the
	Lamb shift, Hyperfine structures and isotope	e shifts, selection rule	es for
	transition, Zeeman effect, Stark effect; C	Ground state of He	lium,
	excited states of Helium, Pauli's anti-symn	netric principle and S	Slater 14
	determinant, Shell and subshell structure	of many electron at	oms,
	central field approximation, Alkali aton	ns and quantum de	efect,
	Corrections to central field approximation	ns, L-S coupling, at	omic
	term symbol, fine structure in the L-S coup	ling scheme, j-j coup	oling.
Unit -3	Energy scales and length scales in molec	cules, Born-Oppenhe	eimer
	approximation, Molecular orbital approx	imation, Heitler–Lo	ndon
	method; Electronic states of diatom	ic molecules: ele	ctron 12
	configurations and molecular ground states,	, excited molecular st	tates,
	excimers; Physical Reasons for Molecular	Binding: covalent t	bond,
T T 1 / 4	multipole interaction, van der Waals interac	ction, Morse potentia	ll;
Unit -4	Rotation of diatomic molecules: rigid rot	or, centrifugal distor	tion,
	Vibration of diatomic molecule, Interacti	on between rotation	and 10
	vibration, Spectra of diatomic molecules:	P,Q, R branches,	1
	determination of band origin, band in	tensities, FranckCo	ndon
	principle.		10
Unit -5	Spectroscopy, Laser Spectroscopy, and Ele	ctron Spectroscopy, Ra	aman 12
	References:	1 17	
	1. Physics of Atoms and Molecules, B. H. B	Bransden and C. J. Jo	achain
	(Longman Scientific & Technical Group Lt	td.)	
	2. Atoms, Molecules and Photons, Wolfgan	g Demtroder (Spring	ger)
	3. Atomic Physics, C. J. Foot (Oxford Univ	ersity Press)	
	4. Atomic and Molecular Spectroscopy, Su	ne Svanberg (Spring	er)
	5. Fundamentals of Molecular Spectroscop	y, C. N. Banwell (Me	cGraw-Hill
	Book Company)		

	Course Outcome	Level
	Learning techniques to solve Schrodinger equation for spherically	Remember
CO 1	symmetric potential, using Spherical Harmonics, understanding	Apply
	basic atomic structure	Understand
CO 2	Understanding full atomic structure for atoms with one and many electrons, application of perturbation theory, application of angular momentum algebra	Understand Apply
CO 3	Understanding formation of molecules and their stability, learning electronic structure of di-atomic molecules	Understand
CO4	Learning about various motion of a molecule and its effect on the energy level	Understand
CO5	Learning various spectroscopic techniques	Apply Skill

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark		\checkmark	\checkmark
CO4	\checkmark	\checkmark		\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Course C	ode: PHY413	Theory	Credits 4	
Course T	itle: Statistical Mechanics	·		
Unit -1	Introduction: Microstates and macrostates- in phase space, density distribution in Phas evolution. Conditions for equilibrium. Diff systems and concepts of ensemble. Time a	phase space and volu- e space, Phase space erent thermodynamic verage and ensemble	ume Hours	
	average; Ergodic theory. Microcanonical ensemble : Hypothesis of equal a priori probability, Boltzmann entropy; Statistical definition of temperature, pressure, and chemical potential. partition functions and properties, calculation of thermodynamic quantities, perfect gas in micro canonical ensemble; Gibbs Paradox; Sackur-Tetrode equation; correct enumeration of microstates. practical implication of microcanonical ensemble. Derivation of ideal and slightly non			
Unit -2	Ideal gas equation. Canonical ensemble: Equilibrium betwee reservoir; Gibb's canonical entropy, en canonical ensemble; derivation of equipar slightly non ideal gas equation; application oscillator; statistics of paramagnetism.	en a system and a ergy fluctuations in tition theorem, ideal n: a system of Harmo	heat 12 the and ponics	
Unit -3	Grand canonical ensemble: Partition for calculation of thermodynamic quantities fluctuations. Various thermodynamic poter with partition functions. Maxwell-Boltzma Derivation. Calculation of thermodynami monatomic gases. Equivalence of ensembl	unctions and prope es, density and er ntials and their conne nn (MB) distribution c quantities for idea le.	rties, 12 hergy ction law: l	
Unit -4	Quantum Statistics: Bose-Einstein (BE) Sta Statistics, examples illustrating counting pr FD statistics and derivation; I Thermodynamics interpretation of La multiplier; Comparison between the three s which the quantum mechanical distribution classical MB distribution. Thermodynamic Fermions; Black body radiation and P Einstein condensation (qualitative discussi zero and nonzero temperatures.	atistics, Fermi-Dirac rocedures for MB, BE Entropy maximiza agrange's undetern tatistics. Conditions us on functions reduce to behaviour of Boson lanck's radiation; H on); Fermi distributio	(FD) 12 E and ation; hined inder o the s and Bose- on at	
Unit -5	Brownian Motion: Fluctuation, Einstein the diffusion coefficient; Langevin theory Fluctuation-dissipation theorem; random walks.	eory of Brownian mo (qualitative discuss walks and self avo	otion, 8 ion); iding	
	Tasks and Assignments:References:1. Statistical Mechanics: K. Huang (Jo2. Fundamentals of Statistical and The3. Statistical Mechanics by Pathria – E	ohn Wiley and Sons). rmal Physics, F. Reif, Elsevier.	(Mc Graw Hill)	

	Course Outcome	Level
CO 1	Understand concept of ensemble	Understand
CO 2	Applying the ensemble concepts to open, closed thermodynamics system.	Apply
CO 3	Examine the concept of equivalence of ensemble.	Analyze
CO4	Solve different thermodynamics systems by using classical and quantum statistics	Skill
CO5	Find out the application of ensemble concept in diffusive systems.	Evaluate

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark			\checkmark	\checkmark
CO2	\checkmark			\checkmark	\checkmark
CO3	\checkmark			\checkmark	\checkmark
CO4	\checkmark	\checkmark		\checkmark	\checkmark
CO5	\checkmark	\checkmark			

Course Co	ode: PHY414,	Practical	Credits: 2
Course T	itle: Physics Laboratory VIII (Atomic and		
Optics)			
	1. Abbes Refract meter- To Study the variation	of RI with	
	temperature of different liquid.		
	2. Half shade Polari meter- Determination the s	pecific Rotation	of
	given solution.		
	3. GM counting system-		
	4. Diffraction due to Helical Structure		
	5. Optical Characterization of given Solid/Thin	film Liquid by U	JV
	6. Fourier Transform Infrared Spectroscopy		
	7. Raman Spectroscopy		

8. X-ray photoelectron spectroscopy
Tasks and Assignments:
1. Virtually executing the experiments
2. Observation submission
3. Viva-Voce
4. Practical Examination
References:
1. Virtual labs, <u>https://www.vlab.co.in/</u>
2. Brijlal and Subramaniam, "Electricity and Magnetism", Ratan Prahasan
Mardis Educational and University Publishers, Delhi, 1990
3. Jacob Millman and Christos C Halkias, "Electronic Devices and Circuits",
Tata McGraw Hill Edition, 1991.

	PO1	PO2	PO3	PO4	PO5	PO6
PSO1	X	Х		Х	Х	Х
PSO2	X	Х		Х	Х	Х
PSO3	Х	Х		Х	Х	Х
PSO4	Х	Х		Х	Х	Х
PSO5	X	X		Х	Х	Х

Course C	ode: PHY451	Theory	Credits 4	
Course Ti	itle: ELECTRONICS	-		
Unit -1	Semiconductor diodes: Construction, wo	rking principle and	I-V Hours*	
	characteristics of p-n junction diode, device	e performance as rec	tifier	
	(Half-wave and Full-wave rectifiers), volt	age regulator, applic	ation 12	
	of P-N junction as solar cel; Construction	n and I-V characteri	stics,	
	Schockley diode, Zener, Avalanche, Schot	tky-barrier diode an	d	
	Tunnel diodes, LED and photodiodes			
Unit -2	Construction, operation and Characterist	ics of BJT, UJT,	FET, 12	
	MOSFET and CMOS configuration. BJT	as an amplifier; neg	ative	
	and positive feedback circuits; Oscillators	: Hartley and Colpit	t	
	oscillators; Power Amplifiers: Class A, B, AB and C; voltage, current			
	and power amplifiers			
Unit -3	OPAMP - Basics of differential amplifier	s-Characteristics of	ideal 12	
	and practical opamps-Applications; in	nverting, non-inver	ting,	
	Summing, difference, integrating, differentiating amplifiers. Active			
	filter circuits: Low-pass, High-pass, Band-	bass, Band-stop		
Unit -4	Introduction to elements of Boolean alg	gebra, AND, OR, M	NOT, 12	
	NAND, NOR, XOR and XNOR logics.	Combinational circ	cuits:	
	Adders, subtractors, multiplexer/demu	tiplexer, decoder	and	
	encoders-Flip Flops; S-R, J-K, counters- synchronous, asynchronous,			
	Modulo-n-counters-shift registers; Serial to	parallel and vice-v	ersa,	
	universal shift registers, ring counter. A/D	and D/A converters		

Unit -5	Microprocessor: Introduction, components, sysytem bus, 8085 microprocessor architecture; Instruction set and assembler directives, I/O interfacing	12
	Tasks and Assignments: References:	

	Course Outcome	Level
CO 1	Learning of operational principle, construction and output characteristics of diodes, Transistors and Op-amp.	Remember
CO 2	Differentiation of different diodes through their I-V characteristics	Understand
CO 3	Designing of half wave and full wave rectifiers with diodes; amplifiers and oscillators with transistors and op-amps, construction of active filters with op-amps	
CO4	Illustration of logic gates and verification of truth tables	Analyze
CO5	Design and analyse combinational and sequential logic circuits	Skill
CO6	Assembly programming(addition/subtraction) using 8085 microprocessor	Understand

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark				
CO2	\checkmark	\checkmark		\checkmark	
CO3	\checkmark	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark	
CO5	\checkmark	\checkmark	\checkmark	\checkmark	
CO6	\checkmark	\checkmark			\checkmark

Course Code	e: PHY452	Practical	Credits 2		
Course Title	e: Physics Laboratory-IX				
(ELECTRO	(ELECTRONICS)				
Preliminary	Study of CRO fundamentals		3		
experiments	IV characteristics of a junction diode				
1	Study of IV characteristics of a zener dio	de and voltage regula	ation 3		
	by zener diode.				
2	Half wave, full wave and bridge rectifier	using diodes.	3		
3	A study of Transistor Characteristics (a) CB, (b) CE and (c) CC.				
4	Studies on BJT CE amplifier				
5	Colpitt's oscillators				
6	Characteristics of MOSFET.				
7	Voltage regulator using IC 7805				
8	Construction of Logic Gates: AND, OR,	NOT using Transisto	or 3		
9	Flipflops: RS, JK				
10	Operational amplifier: Summing, Inverting, , Differentiator,				
	Integrator				
11	Assembly programming(addition/substra	tion) using 8085	3		
	microprocessor				

	Course Outcome	Level
CO 1	Understanding the output characteristics of P-N junction and Zenor diodes	Remember
CO 2	Study of output characteristics of transistors in different configuration & MOSFET	Understand
CO 3	Demonstration of voltage regulator using Zenor diodes & IC 7805, Construction of rectifiers, amplifiers and Oscillators	Apply
CO4	Construction of logic gates; flip-flops	Analyze
CO5	Application of Operational amplifier: Summing, Inverting, & programming using 8085 microprocessor	Skill

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
C01	\checkmark	\checkmark			
CO2		\checkmark			
CO3	\checkmark	\checkmark		\checkmark	
CO4	\checkmark	\checkmark		\checkmark	
CO5	\checkmark	\checkmark			\checkmark

Semester VIII

Course co	de: PHY421	Theory	Credits 4
Course Ti	tle: Modern Optics		
Unit -1	Origin and mathematical construct of travel wave equation, representation of waves, h waveforms: spherical waves, cylindrica Electromagnetic wave, Fresnel equa transmittance, total internal reflection, Ev total internal reflection, Polarization of ligh polarized light, Nicol prism, Rochon and plates, Optical activity, Fresnel's explanation	ling waves, thediffered narmonic waves, idea al waves, plane w tions, reflectance vanescent wave, frust t, Production of Wollaston prism, W on of rotation.	ential Hours lized aves, and 12 rated Vave-
Unit -2	Superposition of coherent and incoherent v group velocity, Interference of light, Con Young's double-slit experiment, Fringes of of equal thickness, The Michelson interfer interference, Fabry-Perot interferometer, et	waves, phase velocity nditions for interference equal inclination, Fri- erometer, Multiple balon.	y and ence, inges 12 beam
Unit -3	Diffraction of light, Huygens-Fresnel diffraction: from single slit, circular aper slits, The diffraction grating, resolution of in half-period zones, zone-plate, Fresnel dif aperture, opaque disc; near-field diffraction single slit using Cornu's spiral.	principle, Fraun rtures, double slits, maging systems, Fres ffraction from a cir ion of straight edge	hofer nany nel's 14 cular and
Unit -4	Fourier series, wavepackets, Fourier transfe transformer, Coherence Time and Line wi Spatial Coherence and Temporal Cohere Fraunhofer diffraction, Spectra, Convoluti- optical pulses.	orm, The lens as a Fo dth via Fourier Ana- once, Fourier method on and Correlation of	urier lysis, 10 ds in of
Unit -5	Response of non-linear optical medium, n classical origin of nonlinear susceptibil medium, second harmonic generation, su parametric oscillation, parametric Amp Quantization of electromagnetic field in radiation field, quadrature operators, squeez mechanical effects of light - laser cooling principle of complementarity, quantum eras	onlinear polarization ity, waves in nonlum-frequency genera ilification, self-focu a cavity, Fock state zed light, photon stati g and trapping of at sure	n, inear ttion, sing; 12 es of stics, oms,
	References: 1. Optics, Eugene Hecht (Addison Wesley) 2. Fundamentals of Optics, F. A. Jenkins of Custom Publishing) 3. Optics, Ajoy Ghatak, (Tata McGraw Hill 4. Nonlinear Optics, R. W. Boyd (Academi 5. Quantum Optics - An Introduction, Mark	& H. E. White (McG l) ic Press) c Fox (Oxford Univer	Fraw-Hill Primls

	Course Outcome	Level
CO 1	Understanding general characteristic of traveling waves and establishing light as a transverse electromagnetic wave	Remember
CO 2	Understanding interference phenomena and its application in various optical devices	Understand Apply Skill
CO 3	Understanding diffraction effects and practicality of the usage of various imaging devices as well as spectrometers	Understand Apply Skill
CO4	Learning Fourier method to solve various optical problems	Apply Skill
CO5	Learning beyond the conventional wave optics	Understand

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark				\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark		\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Course Co	ode: PHY422	Theory	Credits
Course Ti	tle: Nuclear and Particle Physics		4
Unit -1	Brief Introduction to proton, neutron disco	very, properties of st	trong 12
	nuclear force, units used in nuclear physics, Bulk Properties of		
	Nuclei: Nuclear mass, charge, size, Isob	ar, isotope and isot	ones.
	Mass spectrometer (Bainbridge). Binding e	nergy, binding energ	y per
	nucleon versus mass number curve and its	characteristics.	
Unit -2	Nuclear stability, binding energy of	the nucleus, qualit	ative 12
	description of the liquid drop model	of the nucleus, Be	the•- Hours
	Weizsacker mass formula (only statemen	t and explanation o	f the
	terms in the formula), extreme independent	shell model of the nu	cleus
	and its predictions for magic numbers and g	ground state spin par	ity of
	the nucleus, spin and magnetic, electric qu	adrupole moment. P	arity,
	Sub•barrier fusion, symmetries in nuclei,	Quantum Mechanica	ıl
	features of nuclear system.		
Unit -3	Radioactivity: alpha, beta and gamma ray	s, velocity and energy	gy of 12
	alpha particles, Geiger• Nuttal law, Beta	decay, nature of beta	a ray Hours
	spectra, neutrinos and positrons, inverse	e beta decay, range	and
	strength of weak force, halflife and d	ecay rate of radioa	ctive
	elements, radioactive series. Interaction of	of nuclear radiation	with
	matter, description of detectors: Gas detector	or, silicon and scintill	ation
	counters.		
Unit -4	Qualitative Approach to Nuclear Reactions	S: Conservation princ	iples 12
	in nuclear reactions, Threshold energy,	nuclear reaction	cross Hours
	•sections • Types of fission• distribution of	f fission products – f	issile
	and fertile materials – neutron emission	in fission – spontar	neous
	fission • Explanation of nuclear fission u	using liquid drop m	odel,

	fission products and energy release. Spontaneous and induced fission	
	transuranic elements. Chain reaction • fusion• energy released -	
	stellar energy – controlled thermonuclear reaction – plasma	
	confinement. Reactors: Qualitative description of fission reactors,	
	schemes for nuclear fusion, fuels, moderators, and coolants.	
Unit -5	Elementary Particles: Four basic interactions in nature and their	12
	relative strengths, examples of different types of interactions,	Hours
	Quantum numbers, •mass, charge, spin, isotropic spin, intrinsic	
	parity, hypercharge, Charge conjugation. Conservation of various	
	quantum numbers, Classification of elementary particles, hadrons	
	and leptons, baryons and mesons, elementary idea about quark	
	structure of hadrons, octet and decuplet families. Brief introduction	
	to Feynman diagram.	

	Course Outcome	Level
CO 1	Discovery of nucleus and Strong force, models of nucleus, Shell model, properties of radiation, various nuclear reactions, four fundamental forces and their properties, classification of elementary particles, symmetry and different quantum numbers.	Remember
CO 2	Shell model, Quantum mechanical treatment of nucleon system, scattering, Alpha decay, beta decay, interaction of radiation with matter, Gell-Mann's eight fold way, conservation of different quantum numbers and their relation to symmetry-Noether's theorem	Understand
CO 3	Shell model to find nuclear spin, magnetic moment and electrical quadrupole moments of various nuclei. Apply quantum mechanics to solve alpha-decay and beta-decay process, also to understand nuclear reactions. Theory of interaction of radiation with matter to understand the working principle of radiation detectors. Conservation of various quantum numbers to understand three fundamental forces.	Apply
CO4	Liquid drop models give a very simple idea to model a system and explain its properties. Deuteron problem is helpful to solve quantum mechanical systems, and finding out scattering cross sections, solving kinematic problems related to particle decay using invariant mass methods.	Skill

	PO1	PO2	PO3	PO4	PO5
CO1	1	1	1	1	
CO2	1	1	1	1	
CO3	1	1	1	1	
CO4	1	1	1	1	

Course Code: PHY461		Theory	Cred	its 4
Course Ti	tle: Laser Physics			
Unit -1	Principles of Lasers: Interaction of radiati	on with matter –		Hours*
	Absorption, spontaneous and stimulated emission – Einstein			
	coefficients – relation between spontaneous and stimulated			12
	emmision rates, Light amplification – Thre	shold condition for la	aser	
	action, Line broadening mechanisms – Nat	ural, Collision and		

	Doppler broadening. Laser operations – Two level system, Population inversion in three level and four level systems- Threshold pump power, relative merits and de-merits of three and four level system.	
Unit -2	Laser Types - Mathematical description of Gaussian beams using Maxwell's equations. Propagation of Gaussian beams through optical elements. ABCD law for Gaussian beams. Hermite-Gaussian beams. Laser Systems - Gas lasers: He-Ne laser, Carbondioxide laser, Nitrogen gas laser, Argon ion gas laser – Solid state lasers: Ruby laser, Nd-YAG laser, Dye lasers - Optically pumped laser systems	12
Unit -3	Laser Operations: Resonant cavities, modes of a rectangular cavity, quality factor of an optical resonator, ultimate laser line width , Longitudinal and Transverse mode selection, Pulsed lasers - Q-switching and Mode locking concepts and techniques Resonator configurations - Stability of resonators, - Characteristics of Gaussian beam.	12
Unit -4	Fiber Lasers: Erbium doped fiber laser – basic equations for amplification and its steady state solutions, derivation for doped fiber length, threshold pump power and laser output power, Erbium doped fiber amplifier, mode locking using non-linear polarization, semiconductor lasers, optical gain in semiconductors, density of states, interaction of semiconductor with light, light amplifcation and gain coefficient in semiconductors, Quasi-Fermi levels, Gain in diode laser, Quantum-Well lasers – derivation for gain coefficient.	12
Unit -5	Laser Applications: Holography, Basic Principle – Holographic interferometry – Speckle Metrology, Material processing- welding, cutting, and drilling. laser tracking, pollution monitoring using lasers, lasers in isotope separation, lasers in precision length measurement, lasers in information storage, bar-code scanner, Biological and Medical applications of lasers.	12
	 Tasks and Assignments: References: Lasers Theory and Applications: K. Thyagarajan and A.K. Ghatak (McN C.O. Shea, W.R. Callen and N.T. Rhodes, "An Introduction to Lase Applications", Addison Wesley, 1969. J. Verdeyen, 'Laser Electronics', Second Edition, Prentice Hall, 1990. Goldman and Rockwell, 'Lasers in Medicine', Gordon and Breach, New B.B. Laud, 'Laser and Non-Linear Optics', Second Edition, New Age Inte Limited publishers, 1996. Optics and Atomic Physics – B. P. Khandelwal (Siblal Agarwala). Optical Electronic – A. K. Ghatak and K. Tyagrajan. 	Aillan). ers and their York, 1985. ernational (p)

	Course Outcome	Level
CO 1	Define basic radiation phenomena in atoms such as spontaneous and stimulated emissions, and absorption of radiation.	Remember
CO 2	The concept of laser operation and derivation of threshold condition for laser oscillation.	Understand
CO 3	Apply the ideas of Q-switching and mode locking concepts for producing laser pulses.	Apply
CO4	Analyze the operation of fiber and semiconductor lasers for light amplification	Analyze

CO5	Get knowledge	to	focus	lasers	for	optical	experiments	in	C 1-:11
05	laboratory.								SKIII

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark			\checkmark	\checkmark
CO2	\checkmark	\checkmark		\checkmark	\checkmark
CO3	\checkmark	\checkmark		\checkmark	\checkmark
CO4	\checkmark			\checkmark	\checkmark
CO5	\checkmark	\checkmark		\checkmark	\checkmark

Course Co	ode: PHY462	Practical	Credits: 2	
Course T	itle : Physics Laboratory -X (Laser			
Physics)				
	1) Diffraction due to surface tension waves	on water.		
	2) Diffraction due to helical structure.			
	3) Laser beam characteristics			
	a) Beam waist			
	b) Intensity profile			
	4) a) Determination of laser parameter-div	ergences and wavele	ength	
	for a given laser source using grating.			
	(b) Particle size determination.			
	5) Fibre optics characterisation-To find numerical aperture of single			
	mode fibre and losses.			
	6) Brewster's Angle experiment to find refractive index.			
	7) Polarization of Laser (Verification of Malus Law).			
	8) Light Intensity Vs Distance using by light	nt source.		
	9) Interference and Diffraction through slit.			
	Tasks and Assignments:			
	1. Virtually executing the experiments	5		
	2. Observation submission			
	3. Viva-Voce			
	4. Practical Examination			
	References:			

1. Optical Fibre Communications: G. Keiser (Tata McGraw Hill).
2. Application of lasers, John F. Ready.
3. Principles of lasers, Fourth edition-by Orazio Svelto

	Course Outcome	Level
CO 1	Students can understand the handling of laser light	Understand
CO 2	Students can able to use the laser light source through fiber for various applications	Apply
CO 3	Students can able to utilize the laser light to various experiments	Utilizing
CO4	Students can able to experimentally understand about the nature of light and its property changes	Experimental
C05	Students can use this laser experimental study to the research level for laser production and characterization for advanced level applications	Research

	PO1	PO2	PO3	PO4	PO5
C01			X		
CO2		X			
CO3	X				
CO4					X
CO5				X	

Code: PH Course Ti	Y463 tle: Experimental Methods and Design	Credits: 4	Theory	Hours
Unit -1	-1 Measurement of fundamental constants: e, h, c – Measurement of high and low resistances, inductance and capacitance – Detection of X-rays, Gamma rays, charged particles, neutrons – Ionization chamber – Proportional counter – GM counter – Scintillation detectors – Solid State detectors.			12
Unit -2	Emission and Absorption Spectroscopy – Measurement of Magnetic field – Hall effect – Magnetoresistance – X-ray and neutron Diffraction.		10	
Unit -3	Vacuum Techniques – Basic idea of conductance, pumping speed – Pumps: Mechanical Pump – Diffusion pump – Gauges – Thermocouple gauge – Penning gauge – Pirani gauge – Hot Cathode gauge – Low temperature systems – Cooling a sample over a range up to 4 K – Measurement of low temperatures.		12	
Unit -4	it -4 Measurement of energy and time using electronic signals from the detectors and associated instrumentation – Signal processing – A/D conversion – multichannel analyzers – Time-of-flight technique – Coincidence Measurements – true to chance ratio – Correlation studies. Error Analysis and Hypothesis testing – Propagation of errors – Plotting of Graph – Distributions – Least squares fitting – Criteria for goodness of fits – Chi square test.			12

Unit -5	Design of experiment – need for experiments (validation of theory/ verification of theory/ addition to database); computer interfacing; Data collection and analysis – errors and accuracy of data collected, types of errors, propagation of errors, reporting data – mean, variance, method of least Bsquares fit, central limit theorem, error bars. Data reproducibility and ethics of data collection.phase sensitive detection; shielding of cables.		
	Tasks and Assignments: References:		
	1. J.P. Holman, Experimental Methods for Engineers. 7th Edition. McGraw Hill		
	(2000). 2 J. M. Lafferty (Editor) (1998) Foundations of Vacuum Science and		
	Technology, Wiley Interscience.		
	3. Douglas C. Montgomery, Design and Analysis of Experiments, John		
	Wiley(2004).		
	Suggested Reading:		
	4. Anthony Kent, Experimental Low-Temperature Physics ,Macmillan Physical Science (1993)		
	5. T. G. Beckwith, R. D. Marangoni and J. H. Lienhard ,Mechanical		
	Measurements,6th Edition(2006),Prentice Hall.		
	6. Ernest O Doebelin, Measurement Systems: Application and Design. 5th		
	edition, Tata McGraw Hill.		
	7. Albert D Helfrick and William D Cooper (1992), Modern Electronic		
	Instrumentation and Measurement Techniques. Prentice Hall.		
	8. Hermann K P Neubert, Instrument Transducers: An introduction to their performance and design. Oxford University Press (2003)		
	9. J. A. Blackburn Modern Instrumentation for Scientists and Engineers, Springer (2001)		
	~ro. ().		

	Course Outcome	Level
CO 1	Different experimental techniques, need for vacuum technology, methods used in the design of experiments.	Remember
CO 2	Understand the strength and limitation of each technique and choose the right technique for characterization of properties. Understand the methods used in the design of experiments and how these methods are connected to statistical models.	Understand
CO 3	Approach complex industrial and business research problems and address them through a rigorous, statistically sound experimental strategy. Apply the analytical techniques and graphical analysis to the experimental data.	Apply
CO4	Analyze the pros and cons of applying the experimental methods to correlate with the Physics theory.	Analyse
CO5	Design simple experiments him/her self and have a general insight into how data analysis is done in connection to designed experiments.	Skill

General Objectives	Specific Objectives
--------------------	---------------------

Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark			
CO2	\checkmark	\checkmark			
CO3	\checkmark	\checkmark	\checkmark	\checkmark	
CO4	\checkmark	\checkmark		\checkmark	
CO5	\checkmark	\checkmark	\checkmark	\checkmark	

Course Code: PHY464 Course Title: Physics laboratory-XI (Experiment Techniques)	Credits: 2	Laboratory/ Practicals	Hours	
1. Measurement of resistivity of semicon method.	luctors by four	probe	3	
2. Verify the following laws (i) AC Whe Bridge (iii) De Sauty's bridge	2. Verify the following laws (i) AC Wheatstone bridge (ii) Maxwell's Bridge (iii) De Sauty's bridge			
3. Determine the optical constants of Thin substrate.	film deposited	on transparent	3	
4. Determine the electric dipole moment of	4. Determine the electric dipole moment of organic molecule (Acetone)			
5. Determine the dielectric constant of Non polar liquid (Benzene)				
Repeat/ Revisit experiments				

	6. Experimentally determine the temperature dependence of the capacitance of a ceramic capacitor	3		
	7. Permittivity of dielectric materials (LCR meter)			
	8. Measurement of High and Low Resistance			
	9. Lock in amplifier.	3		
	Repeat/ Revisit experiments	3		
References: 1. B.L. Worsnop and H. T. Flint, Advanced Practical Physics, Asia Publishing House.				

- 2. Erhan Gülmez: Advanced Physics Experiments (1999)
- C.L. Arora, Practical physics, S. Chand Publication,
 Daryl W. Preston and Eric R. Dietz: The Art of Experimental Physics.
 Class materials and the references within.

	Course Outcome	Level
CO 1	Different experimental techniques, methods used in the design of experiments.	Remember
CO 2	How to plan, design and conduct experiments efficiently and effectively, and analyze the resulting data to obtain objective conclusions.	Understand
CO 3	Apply the gained knowledge on the operational details of the experiments and interpret the obtained data.	Apply
CO4	Analyze the resulting data of the given experiment(s), and submit lab report at the end of every lab session.	Analyse
CO5	Able to design and carry out an experiment on his/her own, Design simple experiments him/her self and have a general insight into how data analysis is done in connection to designed experiments.	Skill

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish

Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,	
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize	
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate	

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark		\checkmark	
CO2	\checkmark	\checkmark	\checkmark		
CO3	\checkmark		\checkmark	\checkmark	
CO4	\checkmark	\checkmark	\checkmark	\checkmark	
CO5	\checkmark	\checkmark	\checkmark	\checkmark	

Semester - IX

Course Co	ode: PHY511	Theory	Credits 4		
Course Ti	Course Title: Condensed matter physics II				
Unit -1	Inter and intra molecular interactions, self-a	assembly and self-	Hours*		
	association, correlations, formation of cond	lensed phases, length	L ,		
	time and energy scales in condensed matter	systems Basic	12		
	phenomenology of soft condensed matter s	ystems: phase behavi	our,		
	diffusion and flow, viscoelasticity.				
Unit -2	Order Parameter, Phases and Phase transition	ons Mean Field theor	ry 12		
	and phase diagrams, order parameter, metas	stable states. Interfac	es		
	and wetting, Young's equation, solid-liquid	l interaction.			
Unit -3	Introduction to Liquid crystals, Frank free energy, Landau de				
	Gennes model of isotropic-nematic transition	on, Onsager's mean f	ield		
	theory, nematic-smectic transition.				
Unit -4	Introduction to colloids, Poisson- Boltzmann theory, DLVO theory, 1				
	sheared colloids, stability of colloidal systems, measurement of				
	interaction.				
Unit -5	Introduction to Polymers & Membranes: Model systems, chain 12				
	statistics, ideal polymers, role of solvent, Equivalent Kuhn chain,				
	mean square end-to-end- length and radius of gyration, Probability				
	distribution in an ideal polymer, Entropic "Hook's Law", ideas of				
	self-avoidance, rubber elasticity, viscoelast	icity and reptation			

	Course Outcome	Level
CO 1	Understand the origin of condensed phases and the scales involved	Understand
CO 2	Understand phase transitions and wetting	Understand
CO 3	Understand liquid crystals and apply phase transition principles to their meso phases	Understand and Apply
CO4	Analyze colloids with respect to various theories	Analyze
CO5	Analyze polymers with respect to statistical physics models	Analyze

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark		\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Course Co Course T	ode: PHY551 itle: Computational Physics II	Theory	Cred	its 4
Unit -1	Introduction and overview Introduction and Basic concepts, Theoretical Background, Basic equations for interacting electrons and nuclei, Coulomb interaction in condensed matter, Independent electron approximations, Exchange and correlation, Periodic solids and electron bands, Structures of crystals: lattice + basis, The reciprocal lattice and Brillouin zone, and the Bloch theorem. Time reversal and inversion symmetries, Integration over the Brillouin zone and special points Density of states - Uniform electron gas and simple metals.			Hours 12
Unit -2	Introduction to quantum mechanical r and Density function theory Non-interacting and Hartree-Fock appro- hole and energy. Density functional theor Fermi-Dirac approximations: example Hohenberg-Kohn theorems, Constrained density functional theory, Extensions of Ho The Kohn-Sham ansatz. Replacing one pr Kohn-Sham variational equations E_{xc} , correlation hole - meaning of the eigenva- Kohn-Sham theory.	nodeling: Hartree - ximation, the correl ry: foundations, The of a functional. search formulatio ohenberg-Kohn theor oblem with another: V_{xc} and the exch alue. Intricacies of	Fock ation omas- The n of rems, : The nange exact	12

Unit -3	Exchange Correlation Functionals, Correlation effects. And SCF calculations Functionals for exchange and correlation - The local spin density approximation (LSDA), Generalized-gradient approximation (GGAs) , LDA and GGA expressions for the potential Vxc(r), Non-collinear spin density, Non-local density formulations: ADA and WDA - Orbital dependent functionals I: SIC and LDA+U. Orbital dependent functional II: OEP and EXX, Hybrid functionals -Tests of functionals Solving Kohn-Sham equations – Self-consistent coupled Kohn Sham equations - Total energy functionals - Achieving self-consistency – Numerical mixing schemes - Force and stress.	12
Unit -4	Electronic structure from plane wave and localized basis methods Determination of electronic structure – Atomic sphere approximation in solids, Plane waves and grids: basics - The independent particle Schrodinger equation in a plane wave basis. The Bloch theorem and electron bands - Nearly free-electron-approximation - Form factors and structure factors. Plane-wave method - 'Ab initio' pseudopotential method - Projector augmented waves (PAWs) - Simple crystals: structures, bands, - Supercells: surfaces, interfaces, phonons, defects - Clusters and molecules. Localized orbitals: tight- binding – Tight-binding bands: illustrative examples - Square lattice and CuO ₂ planes - Examples of bands: semiconductors and transition metals - Electronic states of nanotubes. Localized orbitals: full calculations – Solution of Kohn-Sham equations in localized bases. Analytic basis functions: Gassians - Gassian methods: ground state and excitation energies - Numerical orbitals - Localized orbitals: total energy, force, and stress - Applications of numerical local orbitals	12
Unit -5	Mixed Basis Methods and Their Applications Augmented plane waves (APW's) and 'muffin-tins' – Solving APW equations: examples Muffin-tin orbitals (MTOs). Linearized augmented plane waves (LAPWs) - Applications of the LAPW method - Linear muffin-tin orbital (LMTO) method - Applications of the LMTO method - Full potential in augmented methods - Molecular dynamics (MD): forces from the electrons - Lattice dynamics from electronic structure theory - Phonons and density response functions - Periodic perturbations and phonon dispersion curves - Dielectric response functions, effective charges - Electron- phonon interactions and superconductivity.	12

	Course Outcome	Level
CO 1	Introduce students to modelling of solids and predict as well as interpret their various properties using computational modelling.	Acquire, Understand,
CO 2	Show how these modelling methods can be used to understand fundamental material structure and properties as well as the relationships between material structure and material behaviour.	Evaluate, Analyse,Skill
CO 3	Develop an understanding of the assumptions and approximations that are involved in the modelling frameworks at the various time and length scales.	Remember, Understand, Analyse, Apply
CO4	Students will be introduced to the basis for the simulation techniques, learn how to use computational modelling, and how to present and interpret the results of simulations.	Understand, Apply, Skill
CO5	The students will learn various computational parameters and practical knowledge involve in modelling functional properties of solids and with that knowledge they can design materials in the computational lab for various applications.	Understand, Analyse, and Apply

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark			\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark		\checkmark
CO3	\checkmark		\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark			\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

	Course Outcome	Level
CO 1	Students can understand the fundamentals of Density Functional Theory.	Fundamental
CO 2	Students can utilize the technology to do the experiments and analyze results scientifically and systematically.	Utilizing
CO3	Students can do this practical experiments with various approximations and assumptions which is not available do physically.	Experimental
CO4	Students design new experiments, analyze resulting data and interpret the same to provide valid conclusions.	Experimental
CO5	Students can develop their self-knowledge to critically think for the innovative ideas for the analysis of condensed matter physics and develop their own solutions to societal needs.	Higher study

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark		\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Course Code: PHY5	552,	Practical	Credits: 2
Course Title: Physic	cs Laboratory-		
XII(Computational	Physics II)		
List of Expe			
1. Intr	oduction to Linux	environment and TB- LM	ITO
cod	e.		
2. Plot	tting crystal struct	ure using plotting software	e like
VE	STĂ.		
3. Bar	nd structure plottin	g and analyzing for Si	
	tting the total and	l partial density of states	
and	analyzing the bone	ding interaction present in	i Si
5. Plot	tting and analyzin	g the band structure, tot	al DOS
and	partial density of	states of GaAs. Compar	ring the
elec	etronic structure w	1th that of S1.	
6. Plo ana	tting the charge de lyzing bonding int	ensity for NaCl, Si and Ga reraction.	aAs and
7. Plo	tting and analyzin	ng the band structure, tot	al DOS
and	partial density of s	states of TiO2. Explain wl	hy it's a
tran	sparentconductor.		
8. Plo	tting absorption sp	bectra of Si and GaAs	
9. Plo	tting COHP betwe	en C-C in diamond and b	between
Ga-	Asin GaAs and	explain total energy vs '	Volume
curv	ve for Diamond a	nd Lead. And calculate the	he Bulk
mod	dulus.		

Т	asks and Assignments:
	1. Execution of experiments.
	2. Observation submission
	3. Viva- Voce
	4. Practical Examination
R	eferences:
1.	https://www.vasp.at/wiki/index.php/The_VASP_Manual
2.	https://vaspkit.com/tutorials.html
3.	Martin, R. (2004). Electronic Structure: Basic Theory and Practical
	Methods. Cambridge: Cambridge University Press.
	doi:10.1017/CBO9780511805769
4.	Parr, R., & Weitao, Y. (1995-01-05). Density-Functional Theory of Atoms
	and Molecules. : Oxford University Press. Retrieved 17 Sep. 2021, from
	https://oxford.universitypressscholarship.com/view/10.1093/oso/9780195092
	769.0
	01.0001/isbn-9780195092769.

ſ

	Course Outcome	Level
CO 1	Students can understand the fundamentals of Density Functional	Fundamental
	Theory.	**
CO 2	Students can utilize the technology to do the experiments and	Utilizing
001	analyze results scientifically and systematically.	
	Students can do this practical experiments with various	
CO3	approximations and assumptions which is not available do	Experimental
	physically.	1
604	Students design new experiments, analyze resulting data and	E
CO4	interpret the same to provide valid conclusions.	Experimental
	Students can develop their self-knowledge to critically think for	
CO5	the innovative ideas for the analysis of condensed matter physics	Higher study
	and develop their own solutions to societal needs.	

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark				
CO2	\checkmark	\checkmark			
CO3			${\bf \triangleleft}$		
CO4		$\mathbf{\nabla}$		\square	
CO5				\square	$\mathbf{\nabla}$

Course Co Course Ti Physics)	ode: PHY571 tle: Physics Laboratory XIII (Advanced	Credits: 2	Practical	Hours	
	1. Growth of KDP Crystal.				
	2. Thin film deposition using Physical Vapor Deposition Method.				
	3. FTIR Study of binary liquids (Ethylene glycol-Ethylene system)				
	4. Determine the lattice constants of ceramics.				

Repeat/ Revisit experiments	3
5. Growth of ADP Crystal.	3
6. DSC – study of phase transitions in liquid crystals	3
7. Thin film Coating by Spray Pyrolysis techniques (PVA)	3
8. Preparation of thin film (Solid/soft matter)	3
Repeat/ Revisit experiments	3

References:

- B.L. Worsnop and H. T. Flint , Advanced Practical Physics, Asia Publishing House.
 Erhan Gülmez: Advanced Physics Experiments (1999)
 4. Daryl W. Preston and Eric R. Dietz: The Art of Experimental Physics.
 Class materials and the references within.

	Course Outcome	Level
CO 1	Working principles of the various techniques, identify the strength and limitation of each technique.	Remember
CO 2	Understand the intuitive ideas governing the functioning of various techniques, categorize and analyze the resulting data to obtain objective conclusions.	Understand
CO 3	Use the different measuring devices and meters to record data with precision and accuracy. Apply the gained knowledge on the operational details of the experiments for sample preparation.	Apply
CO4	Analyze the resulting data of the given experiment(s), and submit lab report at the end of every lab session.	Analyse
CO5	Plan and conduct experimental while employing proper note- taking methods.	Skill

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,

Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark		\checkmark	
CO2	\checkmark	\checkmark	\checkmark		
CO3	\checkmark		\checkmark	\checkmark	
CO4	\checkmark	\checkmark	\checkmark	\checkmark	
CO5	\checkmark	\checkmark	\checkmark	\checkmark	

Elective Course

Course C Course T	Course Code: PHY0E01TheoryCredCourse Title: Solar Energy and its ApplicationsCred			dits 4	
Unit -1	Introduction			Hours	
	Energy scenario current, energy future, energy sources - Energy demand and availability; Conventional, Nonconventional, and Renewable energy resources; Environmental impacts of conventional energy usage.				
Unit -2	Solar Collector, Thermal Technology, and Applications Solar radiation and electromagnetic spectrum, solar radiation entering the earth system, Solar angle of incidence on tilted surface - measurement and estimation on horizontal and tilted surfaces - flat plate collector thermal analysis - testing methods - evacuated tubular collectors - concentrator collectors - compound parabolic concentrators - parabolic trough concentrators - performance of the collectors			12	
Unit -3	Solar Photovoltaic System and Applicate Basic principle of solar photovoltaic conver- and characteristics. Block diagram of gener and their characteristics,– Photovoltaic junction under equilibrium and biasing, ope circuit current, I-V and P-V curves, ca measurement – PV cell, modules, and arr power point operation - Load estimation Battery sizing, array sizing. Voltage regula - centralized and decentralized PV systems grid connected system - System insta maintenances - field experience – Applicate and economics of PV systems	ions sion, Solar cell param al PV conversion sy cell technologies - en circuit voltage and alibration and effic ray, - Array design, n, Selection of inve- tion - maximum trac - stand alone - hybri llation - operation ions - PV market and	eters stem - p-n short iency peak orters, king d and and alysis	12	

Unit -4	Solar refrigeration and Air-conditioning	12				
	Potential and scope of solar cooling, Types of solar cooling systems,					
	solar collectors and storage systems for solar refrigeration and air-					
	conditioning, solar operation of vapor absorption cycle, temperature concentration diagram, enthalpy concentration diagram, steady flow					
	process with binary mixtures, Energy balance for various components of vapor absorption cycle, Analysis of absorption system using					
	concentration chart. Solar Passive Architecture - passive cooling					
	concepts: evaporative cooling - radiative cooling.					
Unit 5	Other Applications of Solar Energy Technologies	12				
Unit -5	Solar water heaters – Solar cooker – desalination – Solar Air heaters –	12				
	Application of solar air heaters Solar Drving with various driers –					
	Heating and Drying of Agricultural products – moisture content and					
	its measurement – solar ponds – Application of solar ponds – Solar					
	pumping.					
	Tasks and Assignments:					
	Books recommended.					
	1 1 S.P. Sukhatme Solar Energy Tata McGraw Hill Publishing Co	omnany				
	Ltd., New Delhi, 1997.	Shipuny				
	2. S Sukhatme and J Navak: Solar Energy: Principles of Thermal C	ollection				
	and Storage, Third Edition (Tata McGraw Hill, 2008)					
	3. G.N.Tiwari, Solar Energy: Fundamentals, design, Modeling and					
	Applications: 2002, Narosa Publishing house					
	4. Fonash Solar Cell Devices : (Academic Press, New York)(1981))				
	5. Stooker W.F, Jones J.W. Refrigeration And Air Conditioning, Tata					
	McGraw-Hill (2009) 6 C P Arora Refrigeration And Air Conditioning Tata McGraw Hill(2000)					
	6. C.P.Arora, Refrigeration And Air Conditioning Tata McGraw-H	ill(2000)				
	7. Kreider, J.F. and Frank Kreith, Solar Energy Handbook, McGraw Hill, 1981.					
	8. Tiwari G.N., Tiwari A.K., Solar Distillation Practice, Anamaya Publishers, New Delhi(2008)					
	9. VVN Kishore, Renewable Energy Engineering and Technology -					
	Knowledge Compendium, ed. (TERI Press, 2008).					
	10. Goswami, D.Y., Kreider, J. F. and & Francis, Principles of					
	Engineering, 2000.	N 7				
	Delhi, 1999.	rs, New				
	12. G. D. Rai, Solar Energy Utilisation, ,, Khanna Publishers, Delhi	i.(1996)				
	13. Volker Quaschning, Understanding Renewable	Energy				
	Systems, Vol. 1(2005)					
	14. Marcelo Godoy Simmoes Renewable Energy Systems CRC (2004)	C Press				
	15. John Twidell Renewable Energy Resources Taylor and Francis	(2006)				
	16. Renewable Energy Sources and Their Environmental Impact	Abbasi				
	& Abbasi Prentice Hall of India (2004).					
	Supplementary Reading:					
	1. Garg H P., Prakash J., Solar Energy: Fundamentals & Applica	tions,				
	TataMcGraw Hill, 2000.					
	2. Duffie, J. A. and Beckman, W. A., Solar Engineering of Th	ermal				
	Processes, John Wiley, 1991.	Caller				
	Discrete Solar Conversion Academic Press 1983	Cens:				

4. Larry D Partain, Solar Cells and their Applications, John Wiley and Sons, Inc, 1995.
5. Roger Messenger and Jerry Vnetre, Photovoltaic Systems Engineering CRC Press 2004
6. Sodha, M.S. Bansal, N.K., Bansal, P.K., Kumar, A. and Malik, M.A.S.
Solar Passive Building, Science and Design, Pergamon Press,
1986.
7. Krieder, J and Rabi, A., Heating and Cooling of Buildings: Design forEfficiency, McGraw-Hill, 1994.
8. MA Green: Solar Cells Operating Principles, Technology, and System
Applications (Prentice-Hall, 1981)
9. MA Green: High Efficiency Silicon Solar
10. Cells (Trans Tech Publications)(1987)
11. SJ Fonash: Solar Cell Device Physics (Academic Press, 1982)
12. Handbook of photovoltaic science and engineering, ed. Antonio Luque
and Steven Hegedus (John Wiley and Sons)(2010)
15. Anna Mani, S Kangarajan: Handbook of Solar Radiation Data for India 1080 (Alliad Publishers)
14 Richard C Neville, RC Neville, Ras Van Der Hoek: Solar Energy
Conversion: The Solar Cell (Elsevier Science & Technology)(1995)
15 Peter Würfel · Physics of Solar Cells· From Basic Principles to
AdvancedConcepts (Wilev-VCH)(2009)
16. JF Kreider and F Kreith: Solar Heating and Cooling: Active and Passive
Design (Hemisphere Publishing Corporation, 1982)
17. Low Temperature Engineering Application of Solar Energy, ed. RC
Jordan(ASHRAE)(1967)
18. HP Garg and J Prakash: Solar Energy: Fundamentals and Applications
(Tata McGraw Hill)(2006)
19. AB Meinel & MP Meinel: Applied Solar Energy: An Introduction
(Addison)
20. Climatological and Solar data for India, Seshadri, (Sarita Prakashan), 1969. 21. Energy Technology, S. Rao and B. B. Parulekar, (Khanna Publishers),
1995.
22. Terrestrial Solar Photovoltaics, Tapan Bhattacharya, (Namsa : Publication House, New Delhi), 1998.
23. Renewable Energy Sources and Conversion Technology, N. K. Bansal,
M.Kleeman and S. N. Srinivas, (Tata Energy Research Institute, New Delhi),1996.
24. Fundamentals of Solar Cells, F. A. Faherenbruch and R. H. Bube,
(Academic Priess)(1983).
25. Thin Film Solar Cells, K. L. Chopra and S. R. Das, (Plenum Press), 1983.
26. Shan K. Wang, Hand Book of Air Conditioning and Refrigeration (2000)
27. Ahmadul Ameen, Refrigeration And Air Conditioning(2006)

	Course Outcome	Level
CO 1	Gain basic understanding about energy use and its environmental impact and various renewable energy technologies adopted to mitigate climate change and sustainable development.	Acquire, Understand, Apply, Skill
	Acquire knowledge about the various parameters involved in measuring the solar irradiance on earth and its variation and	Remember, Evaluate,

CO 2	various solar thermal technologies including collectors and	Analyse, Skill
	concentrators.	
	Understand the basic aspects of photovoltaic technologies and	Remember,
~ ~ ~	apply it to various solar cell applications including efficiency	Understand,
CO 3	improvement, tracking, energy storage, grid balancing etc.	Analyse, Apply
CO4	Gain knowledge about solar passive and active cooling./heating and various solar refrigeration technologies, various solar cooling technologies.	Acquire, Understand, Apply, Skill
CO5	The students will learn various applications of solar energies including solar heaters, cookers, solar ponds, solar collectors, solar desalination, solar driers and their basic working principles.	Understand, Analyse Apply,

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark		\checkmark	\checkmark
CO2	\checkmark	\checkmark			\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark			\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Course Code: PHY0E02 Course Title: Semiconductor Physics		Theory	Credits 4
Unit -1	Semiconducting Materials and types		
	Origin of band gap in solids - Concept of effective mass of electron and hole – carrier concentration in an intrinsic semiconductor – electrical conductivity – band gap determination – carrier concentration in n-type and p-type semiconductors – Fermi level – Variation of Fermi level with temperature and impurity concentration – Compound semiconductors – Hall effect – Determination of Hall coefficient. Crystalline and amorphous, inorganic and organic, elemental and compound. Preparation and characteristics. Semiconductors – direct and indirect gaps – carrier statistics (intrinsic and extrinsic) – law of mass action and chemical potential of semiconductors III - V and II – VI compound semiconductors		ctron 12 tor – arrier vel – ation Hall ganic, stics. rinsic al of
Unit -2	Band structure aspects		12
	Band model of semiconductors - Effects o field on the band structure. Frank 'Keldysh impurities: theoretical models and experin and spectroscopic techniques). Optical forbidden . and phonon-assisted transitions Burstein Moss effect. Excitons : free and be	f temperature and ele effect. Localized stat nental probes (Capac properties: allowed and their spectral sh pound excitons.	ectric tes of citive and apes.
Unit -3	Doping And Carrier Transport		12
	Doping: Extrinsic carrier density – Heavily Modulation doping – Transport: Scattering ionized impurity scattering – Low field and and GaAs – Transport of holes – Very h down phenomena – Avalanche break down by diffusion - generation and recombinate emission process, tunneling process.	y doped semiconduct of electrons – Phono l high field transport igh field transport: I (APD) – Carrier tran ion processes, therm	ors – n and in Si Break sport ionic
Unit -4	Metal-semiconductor contacts:		12
	Schottky barrier. P-N junctions: theory o junctions. Characteristics of practical junc ideality. Capacitance effects: Space capacitances. Impurity profiling through ca Tunnel diode and applications. , Physical junction capacitance and width , Breakdo Semiconductor Junction , Rectification Junction , Schottky-diffusion theory.	f carrier transport in tions and deviations charge and diff apacitance measurem model of p-n junct own phenomena, N at metal-semicond	1 p-n from usion ients. ion , letal- uctor
Unit -5	Properties Of Semiconductors Density of states for a 3 dimensional system system – Holes in semiconductors, B semiconductors. Modification of band stru hetero structures. Quantum well stru concentration, Electronic properties of de impurity levels; Photoconductivity. Role of Luminescence. Light emitting diodes and la diodes.	n and in sub 3 dimens and structures of acture by alloying ar ctures, Intrinsic c efects: shallow and f traps and recombina aser action in p-n jun	12 ional some d by arrier deep ation. ction

Tasks	and Assignments:
Books	recommended:
1.	Sze S M, "Physics of Semiconductor Devices", John Wiley and Sons 2001
2.	Kevin F Brennan, "The Physics of Semiconductors", Cambridge
3.	Micheal Shur, "Physics of Semiconductor Devices", Prentice Hall or India 1999
4.	Jasprit Singh, "Semiconductor Optoelectronics Physics and Technology" McGraw Hill Co., 1998.
5.	P. Y. Yu and M Cardona, Fundamentals of Semiconductors, Springer 1992.
6.	K. Seeger, Semiconductor Physics, 9 th Edition, Springer, 2004.
Supple	ementary Reading:
7.	Michael Shur, "Physics of Semiconductor Devices", Prentice Hall o India, 1995.
8.	Allen Mottorshed, "Electron Devices and Circuits", Prentice Hall Inc. 2002.
9.	Jacob Millman, "Integrated Electronics", Tata McGraw Hill Publishing Co. Ltd., 2002.
10.	Schwartz S, "Integrated Circuit Technology", McGraw Hill Publishing Co. Ltd., 2000.
11.	Sze S M, "Semiconductor Devices – Physics and Technology", John Wiley and Sons, 2002.
12.	R.A. Smith, Semiconductors, Academic Publishers, Calcutta (1989)
13.	R.F. Pierret. Advanced Semiconductor Fundamentals Vol.11 Addison Wesley (1989).
14.	M. Shur, Physics of Semiconductor Devices, Prentice Hall (1990)
15.	(1991).
16.	G.C. Jain and W.B. Berry, Transpor1 Properlies of Solids and Energ Conversion, Tata McGraw-Hill (1972).
17.	W.C. Dunlop, An Introduction to Semiconductors, Wiley (1957)
18.	W. Shockley, Electrons and Holes in Semiconductors, D. Van Nostran (1950).
19.	"Physics of submicron devices" by D.K. Ferry and R.O. Grondin, Plenur (New York, 1992).
20.	"Semiconducctor Physics Electronics" by Sheng Li, (Plenum, New York (1993).
21.	"Physics of optoelectronic devices" by S.l. Chang (1995).
22.	"Fundamental of semiconductor theory and device physics" by Shy Wang (1989)
23.	"Semiconductor physics: Pioneering papers" by S.M. Sze (John Wiley New York, 1991)

	Course Outcome	Level
CO 1	To get knowledge about various aspects of semiconducting materials and their electrical conductivity with temperature and doping.	Acquire, Understand, Remember

CO 2	Understand the concept of electronic band structure and its changes with impurities, temperature, electric field etc. and their role on optical properties.	Understand, Evaluate, Analyse, Skill
CO 3	Understand the role of doping on the transport properties including the scattering of ions, electron-phonon etc. and also the effect of electric field, temperature break down, thermionic emission, tunneling effects on charge transport.	Understand, Analyse, Apply
CO4	Understand the electrical transport across interface between metal- semiconductor, semiconductor P-N junction etc. and also the capacitance effects at the junctions.	Understand, Analyse Apply
CO5	Gain knowledge about the changes in opto-electronic properties by alloying, quantum structures, defect levels and heterostructuresin semiconducting materials.	Understand, Apply, Skill

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark		\checkmark	\checkmark
CO2	\checkmark	\checkmark			\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

CO4	\checkmark	\checkmark			\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Course C Course T	Course Code: PHY0E03TheoryCrediCourse Title: Properties of MaterialsCredi		
Unit -1	Mechanical properties Factors affecting mechanical properties - mechanical pro	mechanical tests - te stic deformation by very - fracture - Gri nt materials - diffus	Hours nsile, slip - 12 ffith's ion –
Unit -2	Optical Properties: Electrons in electromagnetic field, optical semiconductors and metals – band to band band and intra band transitions - charg recombination – The continuity equation: I effects and modulation of optical prop photoconductivity, photoelectricity, LED a Non-linear optics - wave propagation in Electrooptic and Nonlinear optic co-e susceptibility – Opticab I second Harmonic	absorption in insul absorption – e injection and rad Diffusion length, exc perties. Luminescen nd liquid crystal disp Non-linear dielect fficients -The non generation.	12 ators, Inter iative itonic ce – blays. rics – linear
Unit -3	 Thermal and Thermoelectric Properties Thermal conduction - Thermal conductive compound media. Determination of the conductors by Forbe's method, Lattice approximation, dispersion relations and not of lattice vibrations and phonons. thermat anharmonicity. Transport properties of so equation. Wiedemann-Franz law. Lattice adiabatic & harmonic approximations, lattice and Debye models. Seebeck, Peltier, and Thomson effects - latthermoelectric curve - neutral and thermoelectric power . 	: ity, Flow of heat the chermal conductivit ce vibrations, harr ormal modes, quantiz l expansion and nee lids. Boltzmann trar ce vibrations, pho ice heat capacity, Ein aws of thermoelectri inversion temper	tough y of nonic cation d for isport nons, nstein city - ature,
Unit -4	Magnetic Properties: Classification - dia, para, ferro, antiferr Langevin and Weiss theories - Heisenber interaction - magnetic aniostrophy - ma molecular field theory – Classical a paramagnetism, Curie's law, spontaneous r structure, spontaneous magnetization and it Curie-Weiss law, explanation of hysteresis materials - ferrite structure and uses r materials - dilute magnetic semiconductor magnons.	to and ferrimagnetic erg's theory of exclusion agnetic domains - Mondon agnetization and do the stemperature depend hard and soft magnatoresistance - Mondon magnetoresistance - Mondon materials. Spin wave	12 sm – hange Weiss y of omain lence. gnetic GMR s and

Unit -5	Dielectric and Ferroelectric Properties:	12
	Dielectric constant and polarizability - Static dielectric constant, electronic, ionic and orientation polarizations - Internal or local fields in dielectrics Clausius- Mossatti equation - complex dielectric constant - determination of dipole moment for polar substances - dielectric losses - frequency dependence of electronic, ionic, orientation polarisabilities - dielectric loss. General properties of ferroelectrics- Curie Weiss behavior - classification of ferro electric materials - dipole theory of ferro electricity - ferro electric domains - applications - piezoelectric and pyroelectric materials and applications, Ferroelectric materials- Pervoskite crystal structure (eg.BaTiO ₃ and PZT).	
	Tasks and Assignments:	
	 Books recommended: 1. V. Raghavan, "Materials Science and Engineering: A First Cours Prentice Hall, 2006. 2. S. O. Pillai "Solid state physics" New age International Pyt I td 	se",
	edition, 2005	, 001
	 Wahab, M. A., "Solid State Physics", Narosa Publishing, 2nd Ed 2005 	ition,
	4. C. Kittel, "Introduction to Solid State Physics" Wiley Eastern Lto	1., 2005. m IE
	Thomsom books, Reprint, 2007.	ni ie,
	 johnSingleton: Band theory and Electronic properties of Solids (OxfordUniversity Press; Oxford Master Series in Condensed Matter Physics). 	
	7. Electricity and Magnetism: Brijlal & Subrahmanyam Ratan PrakashanMandir Publishers -1995.	
	8. Harald Ibach and Hans Lüth "An Introduction to principles of MaterialsScience",	
	Springer, 2003.	
	9. James D. Patterson, Bernard C. Bailey," Solid State Physics: Introduction to the theory" Springer Verlag, edition 1, 2005	
	10. Jasprit Singh, "Semiconductor Optoelectronics Physics and	
	Technology", McGraw Hill Co., 1998	
	11. H.P.Myers, Introductory Solid State Physics, 2nd edition, Viva	
	Books Pvt.Ltd (1998)	
	PearsonEducation (2000)	
	13. M.S. Rogalski and S.B. Palmer, Solid Statae Physics, Gordon	
	BreachScience Publishers (2000)	
	14. Y.K. Lim, Problems and solutions on Solid State Physics, Sarat	
	BOOKPublishers (2002) 15 Eundementals of Electricity and Magnetism:	
	R.G.Mendiratta and BK Sawhney East - West Press(1976)	
	16. E. Lines and A.M.Glass, Principles and applications of	
	ferroelectricsmaterials, Clarendon press, Oxford ,1979.	

	17.	K.V.Keer, Principles of solid state physics, Wiley - Eastern, 1993.
	Sup	oplementary Reading:
	1.	W. D. Callister, "Materials Science and Engineering: An
		Introduction", John Wiley & Sons, 2007.
	2.	Michael Shur, "Physics of Semiconductor Devices", Prentice
		Hall ofIndia, 1995.
	3.	S. Blundell, Magnetism in condensed matter, Oxford university
		press,2001.
	4.	A. Aharoni, Introduction to the theory of ferromagnetism,
		Oxforduniversity press, 2001.
	5.	Y. D. Jiles, Introduction to magnetism and magnetic materials,
		Chapmeanand Hall. (2nd edition).
	6.	L. L. Hench, J. K. West, Principles of electronic ceramics, John
		Wiley and sons, 1995.
	7.	D.R.Tilley and J.Tilley, Superfludity and superconductivity, 3rd
		Edition,Hilger,1990.
	8.	M. Marder, Condensed Matter Physics
	9.	A.J.Dekkar, Electrical Engineering Materials, Prentice Hall, New
		Delhi,1996
	10.	A.J. Dekker, "Solid State Physics", Macmillan & Co., 2000
		- · ·

	Course Outcome	Level
CO 1	Gain fundamental understanding about stress-strain relation and the role of micro/nano structures on mechanical properties.	Acquire, Understand, Apply, Skill
CO 2	Develop fundamental knowledge about the interaction of light with matter and explain optical properties of insulators, semiconductors and metals through interband and intraband transitions. Understand electro-optic and non-linear optical properties microscopically and gain knowledge about various optical transitions such as photoconductivity, luminescence, excitonic effects, photoelectricity etc.	Remember, Evaluate, Analyse, Skill
CO 3	Acquire knowledge about the origin of thermal properties in solids and the role of phonon on transport properties. Get brief introduction about the thermoelectric properties of solids.	Remember, Understand, Analyse, Apply
CO4	Gain knowledge about the origin of various magnetic ordering and the theory to explain the magnetic properties and its applications.	Acquire, Understand, Apply, Skill
CO5	Understand the origin of dielectric polarization and the role of symmetry on spontaneous electric polarization. Classify the piezoelectric, pyroelectric and ferroelectric materials and gain knowledge about the relevant theoretical developments.	Understand, Analyse Apply,

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark		\checkmark	\checkmark
CO2	\checkmark	\checkmark			\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark			\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Course Co Course Ti	ode: PHY0E04 tle: -Physics of Materials Synthesis	Credits: 4	Theory	Hours
Unit -1	Bulk Materials Synthesis Techniques: February mechanical methods, hydrothermal syn powders, chemical methods.	Powders synthe thesis of cer	esis method; ramic oxide	08

Unit -2	Crystal Growth: The crystalline state – classification of crystal growth methods Nucleation – homogeneous and heterogeneous nucleation Melt Growth techniques - Bridgman – Stockbarger method – Czochralski pulling method – Kyropolous method – Non-conservative processes: Zone-refining – Vertical and horizontal float zone methods – Skull melting method – Vernueil flame fusion method, Solution Growth Techniques - Growth by restricted evaporation of solvent, slow cooling of solution and temperature gradient methods – Crystal growth in Gel media – Growth from high temperature solutions - Flux growth principles of flux method –Growth by slow evaporation and slow cooling methods – Hydrothermal growth method., Vapour Growth Techniques – Vapour phase crystallization in a closed system – Gas flow crystallization - growth by chemical vapor transport reaction.	14
Unit -3	Thin Film Synthesis Techniques: Physical vapor deposition, Pulsed LASER Deposition, Sol-Gel, Molecular Beam Epitaxy, Chemical vapor deposition (CVD), Electroplating and anodisation. Plasma enhanced chemical vapor deposition (PECVD) - Sputter technologies - DC and RF sputtering - Evaporation: Resistive heating, electron beam gun - Metal Organic Chemical Vapor Deposition (MOCVD)- Combustion Chemical Vapor Deposition(CCVD) - Atomic Layer Deposition(ALD) - Liquid phase epitaxy (LPE) - Molecular Beam Epitaxy. Sol-gel synthesis (MBE) – different types of coatings -Spin coating.	12
Unit -4	Synthesis of Nanomaterials : Basic approaches- top down and bottom up approaches- various methods for producing nanomaterials. Solid State (Mechanical methods): Mechanical Alloying (MA) and Mechanical Milling (MM)- Severe Plastic deformation. Chemical synthesis: sol-gel method and co-precipitation techniques, Chemical Vapour Deposition (CVD). Physical methods: Condensation, Physical Vapour Deposition (PVD) - Thermal Spray Processing. Examples of materials (metals, alloys, ceramics) produced by each class- comparison of physical, chemical and mechanical methods.	12
Unit -5	Synthesis of Nanoparticles : Introduction – hydrolysis-oxidation- thermolysis - metathesis-solvothermel methods.sonochemistry; nanometals-powers of metallic nano particles-metallic colloids & alloys -polymer metal composites-metallic oxides-rare earth oxides- mesoporous materials-mixed oxides. sono electro chemistry- nanocrystalline materials. micro wave heating-micro wave synthesis of nano metallic particles. quantum-dots from MBE and CVD, wet chemical methods, reverse micelles, electro-deposition, pyrolytic synthesis, self-assembly strategies.	14
	 Tasks and Assignments: 1. References: Ichiro Sunagawa, "Crystals: Growth, Morphology and Perfection Cambridge University Press, Cambridge, 2005. 2. Ramasamy, P. & Santhanaraghavan. P. Crystal growth processes methods, KRU Publications, 2000. 3. Mullin J W, "Crystallization" Elsevier Butterworth-Heinemann, 2004. 4. Brice J C, "Crystal growth processes", John Wiley and Sons, Net 1986. 	and London, ew York,
5.	Milton Ohring, material science of thin film deposition and structure,	
-----	---	
6.	Maissel L I, Glang R Hand book thin film technology Mc Graw Hill 2 nd	
	edition.	
7.	Milton Ohring, The Materials Science of Thin Films, Academic Press, 2001.	
8.	Donald L. Smith, Thin-Film Deposition: Principles and Practice, McGraw	
9	K L Chopra and LI Kaur. Thin Film Device Applications. Plenum Press.	
	London, 1983.	
10.	Rao C N R, Muller A and Cheetham A K, "The Chemistry of Nano	
	materials: Synthesis, Properties and Applications", Vol. 1 & 2, Wiley-VCH, 2003	
11.	G. Cao, "Nanostructures & Nanomaterials: Synthesis, Properties	
10	&Applications" Imperial College Press, 2004.	
12.	W.I.S. Huck, "Nanoscale Assembly: Chemical Techniques (Nanostructure Science and Technology)"	
Sug	gested Reading:	
1.	L.I. Maissel and R. Glang (Eds.), Handbook of Thin film Technology,	
	McGraw- Hill, 1970.	
2.	1. M. Ohring, The materials Science of Thin films, Amazon, 2001.	
3.	M. N. Rahaman, <i>Ceramic Processing</i> , CRC Press, Taylor & Francis Group, EL 2007	
4.	Pradeep T. "Nano : The essentials" Tata Mc Graw Hill Publishing	
	Company Limited, New Delhi, 2007	
5.	Parag Diwan and Ashish Bharadwaj, "Nano Structured Materials",	
	Pentagon Press, 2006	
6.	M. J. Jackson, "Micro fabrication and Nanomanufacturing", CRC Press, 2005.	
7.	P.Rai-Choudhury, "Handbook of Micro lithography, Micro machining, and	
	Micro fabrication", Vol. 2, SPIE Press, 1997.	
8.	M. Madou, "Fundamentals of Microfabrication," CRC Press, 1997.	
9.	G.Timp, "Nanotechnology", AIP press, Springer-Verlag, New York, 1999.	
10.	academic press. John Wiley New york, 2006	
11.	Maissel L I. Glang R Hand book thin film technology Mc Graw Hill 2 nd	
	edition.	
12.	R. Sahu, Physics of solid, nuclei and particle, Narosa publishing house,	
	2006.	
13.	C. C Julian, Introduction of electron Scanning Tunneling Microscopy,	
11	Couloniona university press, 2000 Buckley, H.F., Crystal growth, John Wiely, and sons, New York 1081	
14	Elwell D & Scheel H I Crystal growth from high temperature solution	
15.	Academic Press, New York, 1995.	
16.	Laudise, R.A. The growth of single crystals, Prentice Hall,	
	Englewood,1970.	

	Course Outcome	Level
CO 1	Mechanisms and key features of current and emerging processing techniques employed to fabricate of single crystals, bulk and nano structured materials.	Remember

CO 2	Understand and explain the effects of quantum confinement on the electronic structure and corresponding physical and chemical properties of materials.	Understand
CO 3	Choose appropriate synthesis technique to synthesize 3 dimensional, 2 dimensional, 1 dimensional and 0 dimensional materials of desired size, shape and material properties.	Apply
CO4	Analyze and correlate physical and chemical properties of materials with their processing technique.	Analyse
CO5	Demonstrate the ability to develop case studies of various materials with a focus on fundamentals, fabrication, characterization, and applications.	Skill

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark			
CO2	\checkmark	\checkmark	\checkmark		
CO3	\checkmark	\checkmark	\checkmark	\checkmark	
CO4	\checkmark	\checkmark		\checkmark	
CO5	\checkmark	\checkmark	\checkmark	\checkmark	

Course C	ode: PHY E015	Theory	Credits 4
Course T	tle: NONLINEAR DYNAMICS		
Unit -1	Linear and Nonlinear systems - Mathemat	ical models example	es – Hours*
	Mathematical Implications of Nonlinearity	: superposition princ	iple
	and its validity - Examples and problem	s - linear andnonli	near ¹²
	oscillators – Frequency response curve - Re	esonance and Hyster	esis
	- Examples and problems - Autonomou	is and nonautonom	ous
	systems - Phase plane trajectories - stability	, attractors and repel	lers
	- limit cycle - Examples and problems - Pha	ase space - classificat	tion
	of equilibrium points and Eigen values - s	tability of fixed poir	nts -
	Examples and problems		
Unit -2	Bifurcation - the logistic map – Feigenbaur	n ratio - period doub	ling 12
	phenomenon- Bifurcation diagram - onset	of chaos- other route	s to
	chaos -Lorentz systems - Sensitive depende	ence on initialcondition	on -
	controlling of chaos -bifurcation scenario	o in Duffing oscilla	tor-
Unit -3	Linear and poplinear dispersive wave	propagation - Fou	rier 12
Unit -5	transformation and solution of initial value	propagation - rou	
	and dispersion - Nonlinear dispersive syste	m - Korteweg-de V	ries
	and dispersion - Noninear dispersive syste	l waves Scott Russ	
	phenomenon and Korteweg- de Vries equation - Fermi-Pasta-Illam		
	lattice problem EPU recurrence phenomer	uon discrete Kortey	
	da Vrias aquations (KdV and mKdV) n	umorical experiment	t of
	Zahusky and Kruskal- hirth of soliton		
In:t 1	Zabusky and Kluskar- bitti of soliton.	quations. The notice	n of 12
Unit -4	integrability Nonlineer perturbation th	quations - The notion	
	perturbation method - soliton solutions	of perturbed popli	
	Schrödinger equation Hirota's direct n	of perturbed fioling	iton
	solutions Painleye's analysis: Leading	order Pesonanc	
	Arbitary Analysis and its application	to Korteweg-de V	ries
	Aronary Analysis and its appreation	Lov pair for Kortov	
	de Vries equation	Lax pair for Konew	leg-
Unit -5	Applications of Nonlinear dynamics - so	liton applications in	all 12
	optical communication - Energy transfer	soliton in polypet	ides
	protein and Davydov Soliton DNA -	Function of soliton	in
	cytoskeleton neuronal microtubules - Ion	acoustic solitons in	
	plasma: an application to Saturn's magnetosphere - Pulse solitons in		
	blood circulatory systems.		
Course C	outcomes		

	Course Outcome	Level
CO 1	To be able to understand basic concepts of dynamical system and analyse the mathematical Implications of Nonlinearity (e.g. linear and nonlinear oscillators – Frequency response curve). To be able to finding fixed points and determine their stability (e.g. Phase space, classification of equilibrium points and Eigen values)	
CO 2	To be able to analyse changes (i.e. bifurcations) to dynamical systems as system parameters are varied including the logistic map, period doubling phenomenon Feigenbaum ratio, Bifurcation diagram with appropriate examples.	

CO 3	To understand the properties of linear and nonlinear dispersive waves and localization with various phenomenon such as Korteweg-de Vries equation and the solitary waves and Cnoidal waves, Scott Russel's phenomenon and Korteweg- de Vries equation, Fermi-Pasta-Ulam lattice problem, FPU recurrence phenomenon, discrete Korteweg-de Vries equations (KdV and mKdV), etc	
CO4	To analyse the integrability and concept of nonlinear perturbation theory and applying various mathematical methods (multiple scale perturbation method, Hirota's direct method and 'N' soliton solutions) to solve the nonlinear equations for soliton solution. To apply the analysis of Painleve's analysis, Leading order Resonance and Arbitary Analysis to the nonlinear equations	
CO5	To study the applications of solitons in different biological systems as Energy transfer soliton in polypetides protein, Davydov Soliton DNA, soliton functioning in cytoskeleton neuronal microtubules and Pulse solitons in blood circulatory systems and the applications to the several field like optical communication, Ion-acoustic solitons in plasma and an application to Saturn's magnetosphere.	

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO2		\checkmark	\checkmark		
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO5		\checkmark	\checkmark	\checkmark	

Course Co	ode: PHY0E23	Theory	Credits 4	
Course Ti	itle: Advanced Electromagnetic Theory			
Unit -1	POLARIZATION IN MATTER		Hours*	
	Electric fields in matter – induced dipoles a	and electric susceptib	ility,	
	forces and torques on dipoles in non-unifor	m fields, Polarization	n of 12	
	a medium, field due to polarized object $-c_{0}$	oncept of bound and		
	surface charges, field of an uniformly polar	rized sphere, electric		
	displacement – Gauss's in the presence of c	lielectrics, boundary		
	conditions, linear dielectrics, dielectric con	stant, energy stored i	n	
	dielectric systems, forces on dielectrics.			
Unit -2	MAGNETIZATION IN MATTER		12	
	Magnetic fields in matter – magnetic dipoles – forces and torques on			
	magnetic dipoles, induced orbital dipole moment in atoms – origin of			
	diamagnetism, field due to magnetized object – concept of bound and			
	surface currents, field of an uniformly magnetized sphere, Ampere's			
	law in magnetized materials, boundary conditions, linear magnetic			
	media – susceptibility and permeability, energy of a magnetic dipole			
	in magnetic field, interaction energy of two magnetic dipoles			
Unit -3	POTENTIAL FORMULATIONS OF EI	LECTRODYNAMI	CS 12	
	Scalar and vector potentials in electrodynamics, Gauge			
	transformations, Lorentz gauge, Coulomb g	gauge, Retarded poter	ntials	
	of continuous charge and current distributions, Jefimenko's			

	equations, Retarded potential and fields of an current carrying wire, Retarded potential of a point charge in motion – Lienard Wiechert Potentials, Retarded potentials and fields of a moving point charge – uniform linear and circular motion, fields of a line charge in uniform motion	
Unit 1		12
Unit -4	Electric dipole radiation – power radiated by dipole oscillations	14
	Magnetic dipole radiation – Intensity of radiation Radiation from	
	an arbitrary source of charges and currents fields of quadrupole	
	radiation power radiated by an accelerated point charge – I armor	
	formula Radiation reaction and its physical explanation. Abraham-	
	Lorentz formula. Radiation damping	
Unit -5	RELATIVISTIC ELECTRODYNAMICS	12
	Magnetism – Relativistic viewpoint, Transformation of electric and	
	magnetic fields – Lorentz transformation, electric and magnetic	
	fields of a point charge in uniform motion – Gauss's law for charges	
	in motion, relativistic invariance of field quantities, transformations	
	of an electromagnetic plane wave, Electro-magnetic field tensor,	
	electrodynamics in tensor notation, Lorentz-Force law in relativity,	
	Relativistic potentials.	
	Tasks and Assignments:	
	References:	
	1. David J. Griffiths, Introduction to Electrodynamics, Pearson Pub	olisher, 4 th
	Edition, 2012.	
	2. Tai L. Chow, Introduction to Electromagnetic Theory, Jones &	& Bartlett
	Fublishers, First	
	Edition, 2012. 2 J. A. Strotton, Electromagnetic Theory, Dead Books Dublisher, Fire	t Edition
	3. J A Suaton, Electromagnetic Theory, Read Books Publisher, Fils	st Eattion,
	4 I.P. Paitz, Foundations of Electromagnetic Theory, Narosa Dublish	hor Third
	Fdition 1997	nor, minu
	5. J.D.Jackson, Classical Electrodynamics, John Wiley, Third Edition	1998.
		, 1770.

	Course Outcome	Level
CO 1	Explain basic processes of electric and magnetic fields in matter by defining polarization and magnetization.	Remember
CO 2	The concept of retarded potentials and radiation from accelerated charges.	Understand
CO 3	Apply the concept of retarded potentials to explain radiation from oscillating electric and magnetic dipoles.	Apply
CO4	Analyze the relativistic effects in electrodynamics to solve advanced problems in physics.	Analyze

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new Context	Employ, Illustrate, Use, Solve

Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to	Assemble, Construct, Develop, Formulate,
come to new conclusions	Propose, Organize, Hypothesize
	Arrange for the experiment, Experiment,
Skill	Demonstrate, Verify the Hypothesis, Draw,
	Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark			\checkmark	\checkmark
CO2	\checkmark			\checkmark	\checkmark
CO3	\checkmark			\checkmark	\checkmark
CO4	\checkmark			\checkmark	\checkmark

Course Code: PHY0E29TheoryCrownCourse Title: Nano materials And Nano technologyCrownCrown		Cred	lits 4	
Unit -1	Introduction		1	Hours 12
	Introduction to nanotechnology, physi materials, quantum effects, 1D, 2D and 3D states, Excitons, Coulomb blockade, Zero- dimensional structure, Size control of met properties: optical, electronic, magnetic pro- resonance, change of bandgap; Applicat devices	cs of low-dimens confinement, Dens , One-, Two- and T al nanoparticles and operties; surface pla ion: catalysis, elect	tional ity of hree- their smon ronic	
Unit -2	Nanofabrication			12
	Importance of size distribution control, size selection, assembling and self-organization vanofabrication: patterning of soft material other techniques, chemical self-assemblic cluster fabrication, Langmuir-Blodget g Scanning probe lithography, Micro contact	ze measurement and ation of nanostruct s by self-organisation y, artificial multila rowth, Nanolithogra printing.	l size tures, n and ayers, aphy,	
Unit -3	Nanoelectronics and devices Advantages of nano electrical and electronic devices, micro and nano- electromechanical systems – sensors, actuators, optical switches, bio- MEMS diodes and nano-wire transistors - data memory lighting and displays, filters (IR blocking) – quantum optical devices – batteries - fuel cells and photo-voltaic cells – electric double layer capacitors – lead-free solder – nanoparticle coatings for electrical products		12	
Unit -4	Nanocatalysts and Nanoporous material Nanocatalyts, smart materials, heterogenous composites, nanostructures for molecular re nanorods, nanotubes) – molecular encapsula – nanoporous zeolites – self-assembled nan	s s nanostructures and cognition (quantum ation and its applicat oreactors - organic	dots, ions	12

Unit -5	Nanotechnology for Nanomedince Drug deliveries, drug delivery system, nanoparticle in drug delivery- available applications, nanotechnology future application understanding for treatment. Manufacture of nanoparticles, nanopowder and nanocrystals, targeting ligands applications of nanoparticle in drug delivery, cancer treatment, tissue regeneration, growth and repair, impact of drug discovery and development	12
	Tasks and Assignments:	
	 Books recommended: 1. Nanolithography and patterning techniques in microelectronics, Bucknall, Wood head publishing 2005 2. Transport in Nanostructures, D.K. Ferry and S.M. Goodmick, Guniversity press 1997. 3. Optical properties of solids, F. Wooten, Academic press 1972 4. Micro and Nanofabrication, Zheng Cui, Springer 2005 5. Nanostructured materials, Jackie Y. Ying, Academic press 2001 6. Nanotechnology and nanoelectronics, W.R, Fahrner, Springer 2005 7. Hand book of Nanoscience, Engineering, and Technology, W Goddard, CRC press 2003. 8. Nanoelectronics and Information Technology, Rainer Waser, W 2003. 9. The MEMS Handbook Frank Kreith, CRC press 2002. 10. Charles P. Poole, Jr., Frank J. Owens, "Introducti technology", Wiley, 2003. 11. Gunter Schmid, "Nanoparticles: From T Applications", Wiley-VCH Verlag GmbH & Co., 2004. 	David G. Cambridge Villiam A. Viley- VCH ton to nano Theory to
	 Supplementary Reading: 1. Pradeep T "Nano: The Essentials", Mc Graw Hill Publishing Co. Ltd. 2. Mick Wilson et al, "Nanotechnology", Overseas Press (India) Pvt. 3. Nanoengineering of structural, functional and smart materials, Mark J. Schulz, Taylor & Francis 2006. 4. Nanocomposite science and technology, Pulikel M. Ajayan, Wiley- 	.,2007 Ltd., 2005. k VCH 2005

	Course Outcome	Level
CO 1	To get brief introduction about the nanomaterials and nanotechnology. Also understand the size and shape dependent on the physical properties of materials at nanoscale.	Acquire, Understand,Apply, Skill
CO 2	Gain knowledge about the importance of size distribution, size selectivity, self-assembly on properties of nanoscale materials. Understand various nanofabrication techniques used to synthesis nanomaterials.	Remember, Evaluate, Analyse, Skill
CO 3	Analyse the advantages of using nanotechnology for various electronic applications.	Remember, Understand, Analyse, Apply

CO 4	Understand molecular recognition, molecular encapsulation, nanocomposites, nanoreactors, nanoporous materials for catalysis and smart applications.	Acquire, Understand,Apply, Skill
CO 5	Gain knowledge about nanomedicine, targeted drug delivery, diagnosis and treatment. Understand bio-inspired, bio-mimicking and bio-compatible nano-materials.	Understand, Analyse, Apply.

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in yourown words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark		\checkmark	\checkmark
CO2	\checkmark	\checkmark			\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark			\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Course Code: PHY0E30		Theory	Credits 4
Course Title: Physics of Magnetism and Spintronics			
Unit -1	Fundamental of Magnetism		Hours*
	Origin of permanent magnetic dipoles; Quantum theory of the		
	magnetic moment; Hund's rules. Classical and quantum aspects of		
	diamagnetism; paramagnetism; Curie law;	formula of Van Vleo	:k;
	Crystal field: d-f- metals, magnetic anisotro	ppy; adiabatic	12
	demagnetization; Ferromagnetism; Weiss t	heory; domains; Bloo	ch
	wall; Hysteresis;		
Unit -2	Magnetic Interactions and Relaxation		12
	Exchange interaction, super-exchange,	double exchange.	Band
	magnetism. Collective excitation; Long-	range order: Mean	field
	theory: the theory of Weiss (Neel). Molecul	lar field. Order param	neter.
	Ferro-, antiferro-, iron-magnetism, other ty	ypes of order. Spin g	glass,
	Magnetic domains. Hard & soft materials. Domain Theory; Exchange		
T T 1 / 0	bias. Spin –lattice relaxation; spin-spin rel	axation	
Unit -3	Nano-magnetism.	·	12
	Single-domain particle; Super-paramagne	tism; Nanoparticles	æ
	Cilbert Model: Neel Brown model Neros	el; Landau-Liischitz-	
	Gilbert Model, Neel-Brown model. Nanos	cale magnetisam m s	siliali
Unit 1	Spintropics: Spin polorized ourrents	K Hallosti uctures	orbit 12
UIIIt -4	interaction: Spin relevation: Spin de	, magnons, spin-	and 12
	Transport: Spin dependent tunneling and Tr	enuent Scattering	Giont
	Magneto Resistance: Magnetic Random Ac	ansport, Spin varve, cess Memory: spin	Jian
	torque: Spin transfer oscillators: spin transi	stors	
Unit -5	Molecular magnetism:	51015	12
	High-spin low spin molecules: quantum th	eory of molecular	14
	magnetisam: tunneling of magnetization: or	ther functionalities of	f
	molecular nanomagnets: magneto caloric e	ffect;	

	Course Outcome	Level
CO 1	Identify different kinds of magnetism in solids.	Remember
CO 2	Understanding fundamentals of magnetism; magnetic anisotropy, magnetic domain kinetics; magnetic hysteresis.	
CO 3	Description of long-range magnetic order and of magnetic phenomena at the nanoscale and at molecular and atomic level; Under Various spin dependent transport phenomena; magnetoresistance effect: Spin-torque transfer phenomenon	
CO4	Compare the materials with regards to their magnetic and transport properties and analyse their relevance in relation to technological applications;	Analyse
CO5	Generalize device concepts, theories, and materials requirements for spintronic devices	Skill

General Objectives	Specific Objectives
Remember - retrieval of	List, Name, Define, Identify, Recall,
Information	Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate

Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish
Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark			
CO2	\checkmark	\checkmark			
CO3	\checkmark	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark	
CO5	\checkmark	\checkmark			\checkmark

Course Coo Title: ASTI	le: PHYE032 Course ROPHYSICS	Theory	Credits 4	
Unit -1	Astronomical scales (Distance,Mass, Time), Brightness, Radiant Flux and Luminosity, Apparent and Absolute magnitude scales, Distance Modulus, Measurement of astronomical quantities- Distance, Stellar Radii, Masses of stars from binary orbits, Stellar temperature, Color index of stars. Spectral types and their temperature dependence, Hertzsprung-Russell (HR) diagram.			
Unit -2	Celestial Sphere, Geometry of a sphere, Astronomical coordinate systems - Horizon system, Equatorial system, Coordinate transformation between between Horizon and Equatorial system, Diurnal motion of the stars. Measurement of time, Sidereal time, apparent solar time, mean solar time, Equation of time, Julian date.			
Unit -3	Observing through the atmosphere- Atmospheric Windows, optical telescopes, Radio telescopes, telescope mountings, Magnification, Light gathering power, resolving power and diffraction limit, Detection limit of telescope. Derivation of Virial theorem, Basic equations of stellar structure, simple stellar models- Polytropic model, derivation of the Lane- Emden equation, analytic solution of Lane-Emden equation			
Unit -4	Morphological classification of the Galaxies. Basic structure and properties of the Milky way, Nature of rotation of the Milky Way- differential rotation of the Galaxy and Oort constants, rotation curve of the galaxy and the dark matter			

Unit -5	Cosmological observations, The cosmological principle, Homogeneous and isotropic universe, Friedmann model, Evolution of our universe	
	Tasks and Assignments: References: Theoretical Astrophysics, Vol 1- T. Padmanabhan Fundamental Astronomy, H. Karttunen et. al. Suggested Readings:	
	 An Invitation to astrophysics T. Padmanabhan Galactic dynamics- J. Binney and S. Tremaine 	

	Course Outcome	Level
CO 1	Get the idea of scales (length, mass and time) and order of magnitudes involved in astrophysics, quantities used for astronomical measurements.	Remember, Understand, skill
CO 2	Get the idea of coordinate systems used in astronomical observations, mounting of telescopes in different coordinate systems	Understand, Apply, skill
CO 3	Give the idea of challenges involved in astronomical observations.Give the theoretical understanding of stellar evolution	Understand, Analyze, Apply
CO4	Idea of classification of galaxies, rotation curve of galaxies and observation leading to the idea of dark matter. Emphasize the complementarity of theory and observation.	Understand, Analyze
CO5	Emphasize the importance of scales to give the idea of cosmological principles, observations leading to the current understanding of our universe,	Understand, Apply, Analyse

General Objectives	Specific Objectives
Remember - retrieval of Information	List, Name, Define, Identify, Recall, Recognize, Tabulate, State, Repeat
Understand – demonstration of comprehension	Translate, Interpret, Extrapolate, Define in your own words, Differentiate, Cite example, Relate, Classify, Restate, Summarize, Locate
Apply – applying knowledge in a new context	Employ, Illustrate, Use, Solve
Analyze – supporting assertions through the use of evidence, identifying causes	Compare, Contrate, Criticize, Examine, Question, Test, Distinguish

Evaluate – coming to a judgement on the value of information	Predict, Select, Appraise, Find out,
Create – combining knowledge to come to new conclusions	Assemble, Construct, Develop, Formulate, Propose, Organize, Hypothesize
Skill	Arrange for the experiment, Experiment, Demonstrate, Verify the Hypothesis, Draw, Articulate

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark	\checkmark	\checkmark	
CO2	\checkmark	\checkmark	\checkmark	\checkmark	
CO3	\checkmark	\checkmark	\checkmark	\checkmark	
CO4	\checkmark	\checkmark	\checkmark	\checkmark	
CO5	\checkmark	\checkmark	\checkmark	\checkmark	

Couse cod	le: PHY0E33	Theory	Credits 4		
Course tit	le: Plasma Physics				
Unit -1	Basics of plasmas:		Hours		
	Plasma as the fourth state of matter, macroscopic neutrality, Debye				
	shielding, plasma frequency, the occurrent	nce of plasma in na	iture,		
	collisions, dc conductivity, ac conductivity, diffusion, production of				
	plasma: dc discharge, rf discharge, using particle beam, laser				
	produced plasma, overview of some plasma	a devices.			
Unit -2	Waves in plasmas:				
	Plasma oscillations, Fluid description	of plasma: equation	n of		
	continuity, the fluid equation of motion, m	notion of charged par	rticle 15		
	in uniform electromagnetic fields, charged	l particle motion in	time		
	varying electromagnetic fields, Electron pl	asma waves, Ion aco	ustic		
	wave, Electromagnetic waves in unmagnetic	zedplasma.			
Unit -3	Atomic processes in plasma:				
	Ionization processes, recombination processes; Plasma equilibrium				
	model: thermal equilibrium, local thermal equilibrium, corona				
	equilibrium, collisional radiative equilibrium; Radiation from				
	plasma: blackbody radiation, bremsstrahlung radiation,				
	recombination radiation, line radiation, cyclotron radiation.				
Unit -4	Laser plasma interaction:				
	Ponderomotive energy, Keldysh parameter, multi-photon ionization,				
	optical field ionization, high harmonic generation, Laser absorption				
	processes: inverse bremsstrahlung, resonance absorption, Landau				
	damping; Parametric decay processes, two plasmon decay, stimulated				
	Brillouin scattering, stimulated Raman scattering.				
Unit -5	Applications:	.			
	Laser induced breakdown spectroscopy,	Laser-plasma based	ion 12		
	acceleration, Laser wakefield acceleration, Inertial confinement				

fucion Magnetic confinement fucion. Laser plasma based y ray	
iusion, Magnetie commement fusion, Laser-plasma based x-ray	
laser.	
Reference books:	
1. Principles of Plasma Physics, Nicholas A. Krall and Alvin W. Trivelp	oiece
(McGraw-Hill Book Company).	
2. Introduction to Plasma Physics and Controlled Fusion, Francis F. C	Chen
(Springer).	
3. The Physics of laser-plasma interaction, W. L. Kruer (Addison-We	esley
Publishing Co.).	
4. Short pulse laser interaction with matter- an introduction, Paul Gil	obon
(Imperial College Press).	
5. Fundamentals of Plasma Physics, J. A. Bittencourt (Springer).	
6. The Physics of Plasmas, T. J. M. Boyd and J. J. Sanderson (Cambr	idge
University Press).	U

	Course Outcome	Level
CO 1	It provides a basic introduction to the subject, intended to give the students an overall view of various properties of plasma and the techniques to produce it.	Understand
CO 2	Developing the fundamental equations necessary for an elementary description of plasm and learning its response to external electric and magnetic fields.	Understand Skill Apply
CO 3	Learning various processes occurring in the plasma at the atomic level.	Understand
CO4	Understanding the fundamental physicsof high-power laser interaction with plasmas which help in understanding various applications related to this topic.	Apply Skill
CO5	Learning about some of the important research areas where the physics learnt in this course is applied.	Apply Skill

	PO1	PO2	PO3	PO4	PO5
CO1			\checkmark		\checkmark
CO2	\checkmark			\checkmark	\checkmark
CO3			\checkmark		\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark		\checkmark	\checkmark

Course Course Ti Course Ti theory	ode: PHY0E34 itle: Introduction to classical field	Theory	Credits 4		
Unit -1	Recap of the Principle of relativity: concept of interval, proper time, Lorentz transformation, transformation of velocities, four vectors, and covariant notation. Relativistic mechanics: The principle of least action, Energy and momentum, transformation of distribution functions, decay of particles, invariant cross-section				
Unit -2	Concept of natural units, idea of fields, Discrete and continuous mechanical systems, Classical scalar field (real and complex): Hours Action, Lagrangian, Hamiltonian, Equation of motion, free and interacting field theories, stress-energy tensor.				
Unit -3	Charges in electromagnetic fields: Four potential, action, Lagrangian, Hamiltonian. Equation of motion of a charge in a field, gauge invariance, electromagnetic field tensor, Lorentz transformation of the fields, invariants of the field. Action of the electromagnetic field, current vector, continuity equation, Maxwell's equations, Poynting vector, energy momentum tensor				
Unit -4	Particles in a gravitational field: Concept time intervals, covariant differentiation, C its relation with the metric tensor, equation gravitational field, gravitational redshift, eq in presence of gravitation, Action function energy momentum tensor, Einstein's equation	of metric, distances hristoffel connection of motion of a partic uation of electrodyna on of gravitational f	and 15 and Hours cle in mics field,		
	References: 1. Classical theory of field, Course of theoretical physics Vol 2 L.D.Landau and E.M. Lifshitz.				

	Course Outcome	Level
CO 1	Concepts of relativity, transformations, invariants	Understand ,Remember
CO 2	Idea of fields, linear and non-linear equation of motion, free and interacting theories	Understand
CO 3	Idea of vector fields, energy momentum tensor for vector field and behaviour charge particles in electromagnetic field	Understand , Apply
CO4	Tensor calculus, Background of general relativity, Einstein's Equation	Understand , Apply

	PO1	PO2	PO3	PO4	PO5
CO1	1	1	1	1	
CO2	1	1	1	1	
CO3	1	1	1	1	
CO4	1	1	1	1	

Course C	ode: PHY S01	Theory	Credits 4		
Course Ti	itle: Physics of Art	-			
Unit -1	Introduction to Physics – What is science?	What is Physics?	Hours*		
	Quantification of natural phenomenon, length, mass and time scales				
	of humans and that of the Universe, Role of mathematics in				
	understanding qualitative phenomenon and	its limitations			
Unit -2	Introduction to arts, its role in society, histo	orical role of arts in the	ne 12		
	progression of science, influence of science on arts – with special				
	reference to photography/motion picture an	d paintings,			
Unit -3	Physics of Music : Introduction to music an	nd its forms; Physics	of 12		
	pitch, loudness and timbre; melody, symph	ony and harmony – a	ì		
	basic understanding of western classical an	d Indian classical m	usic;		
	Time scales and rhythm in music and the h	andling of time in			
	Physics; acoustics of auditoria – concepts of	of reverberation, echo	bes		
	and good acoustics.				
Unit-4	Physics of Dance : History of dance; main	elements of western			
	classical dance, Indian classical dance and	modern dance; Phys	ics		
	of rotations and their application in westerr	classical dancing; ro	ble		
	of centre of gravity in the basic stances (pli	e and			
	ardhamandala/araimandi) of the two forms	tension and its			
	resolution; projectiles and jumps – element	s of velocity, friction	and		
	angular momentum.				
Unit-5	Physics of Paintings/Photography: Introduction to electromagnetic				
	spectra; colours and wavelengths; colour wheel, mixing of colours				
	and complementary colors; symmetry and its role in nature; role of				
	symmetry in paintings; the golden ratio; introduction to the Physics				
	of cameras – parts of a camera; lenses and their properties; aperture,				
	Tasks and Assignments:				
	Booding/listoning/viewing overcises for each unit				
	 At least 5 formative tasks and 3 formative assignments in addition 				
	At least 5 formative tasks and 3 formative assignments in addition to summative tasks/avama				
	to summative tests/exams				
	References				
	1 Principles of Physics – Halliday 1	Resnick and Walker	• 10 th Ed Wilev		
	(2015)		, io Eu (filey		
	2. The Physics of Musical Instrument	ts – N H Fletcher ar	ad T D Rossing.		
	2 nd Ed. Springer, 2005		8,		
	3. THE PHYSICS OF MUSIC AND MUSICAL INSTRUMENTS- D				
	R Lapp – Online book http://kell	erphysics.com/acou	stics/Lapp.pdf		
	4. Physics and the Art of Dance: Understanding Movement – K Laws.				
	M Swope and F Russel, Oxford U	niversity Press, 200	2.		
	5. Art and Physics – Parallel Visions in Space, Time and Light –				
	Leonard Shlain, William Morrow and Co, 1 st Ed, 1991.				
	6. Physics of Digital Photography – Andy Rowlands, IOP Publishing,				
	2017.				

	Course Outcome	Level
CO 1	Understand the basics of (Indian) arts – music, dance and photography	Understand
CO 2	Apply concepts of basic Physics (and science) to further the appreciation of arts	Apply

CO 3	Analyze various art forms from a scientific point-of-view	Analyze
CO4	Extend the understanding to other art forms	Skill
CO5	Have a holistic view of the intersectionality of science and arts	Evaluate

General Objectives	Specific Objectives		
Remember retrieval of Information	List, Name, Define, Identify, Recall, Recognize,		
Remember - retrieval of information	Tabulate, State, Repeat		
Understand – demonstration of	Translate, Interpret, Extrapolate, Define in your		
comprehension	own words, Differentiate, Cite example, Relate,		
	Classify, Restate, Summarize, Locate		
Apply – applying knowledge in a new	Employ Illustrate Use Solve		
context	Employ, musuale, Ose, Solve		
Analyze – supporting assertions	Compare Contrate Criticize Examine Question		
through the use of evidence,	Test, Distinguish		
identifying causes			
Evaluate – coming to a judgement on	Predict, Select, Appraise, Find out,		
the value of information			
Create – combining knowledge to	Assemble, Construct, Develop, Formulate,		
come to new conclusions	Propose, Organize, Hypothesize		
	Arrange for the experiment, Experiment,		
Skill	Demonstrate, Verify the Hypothesis, Draw,		
	Articulate		

	PO1	PO2	PO3	PO4	PO5
CO1	\checkmark	\checkmark		\checkmark	\checkmark
CO2	\checkmark			\checkmark	\checkmark
CO3	\checkmark	\checkmark		\checkmark	\checkmark
CO4	\checkmark	\checkmark		\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark